Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem7 Structured version   Unicode version

Theorem stirlinglem7 32044
Description: Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem7.1  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
stirlinglem7.2  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem7.3  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
Assertion
Ref Expression
stirlinglem7  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( J `
 N ) )
Distinct variable groups:    k, n    n, H    n, K    k, N, n
Allowed substitution hints:    H( k)    J( k, n)    K( k)

Proof of Theorem stirlinglem7
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11141 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10916 . . . 4  |-  ( N  e.  NN  ->  1  e.  ZZ )
3 1e0p1 11028 . . . . . . . 8  |-  1  =  ( 0  +  1 )
43a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( 0  +  1 ) )
54seqeq1d 12116 . . . . . 6  |-  ( N  e.  NN  ->  seq 1 (  +  ,  H )  =  seq ( 0  +  1 ) (  +  ,  H ) )
6 nn0uz 11140 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
7 0nn0 10831 . . . . . . . 8  |-  0  e.  NN0
87a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  NN0 )
9 stirlinglem7.3 . . . . . . . . . 10  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
109a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
11 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
1211oveq1d 6311 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
1312oveq2d 6312 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  j )  +  1 ) ) )
1412oveq2d 6312 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  j )  +  1 ) ) )
1513, 14oveq12d 6314 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) )
1615oveq2d 6312 . . . . . . . . . 10  |-  ( k  =  j  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
1716adantl 466 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN0 )  /\  k  =  j
)  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
18 simpr 461 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
19 2cnd 10629 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  CC )
20 2cnd 10629 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  2  e.  CC )
21 nn0cn 10826 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  j  e.  CC )
2220, 21mulcld 9633 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  CC )
23 1cnd 9629 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  1  e.  CC )
2422, 23addcld 9632 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  CC )
2524adantl 466 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  CC )
26 0red 9614 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  e.  RR )
27 2re 10626 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
2827a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  2  e.  RR )
29 nn0re 10825 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  j  e.  RR )
3028, 29remulcld 9641 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  RR )
31 1red 9628 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  1  e.  RR )
32 0le2 10647 . . . . . . . . . . . . . . . . . 18  |-  0  <_  2
3332a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  0  <_ 
2 )
34 nn0ge0 10842 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  0  <_ 
j )
3528, 29, 33, 34mulge0d 10150 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <_ 
( 2  x.  j
) )
36 0lt1 10096 . . . . . . . . . . . . . . . . 17  |-  0  <  1
3736a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <  1 )
3830, 31, 35, 37addgegt0d 10147 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  < 
( ( 2  x.  j )  +  1 ) )
3926, 38ltned 9738 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  0  =/=  ( ( 2  x.  j )  +  1 ) )
4039adantl 466 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
0  =/=  ( ( 2  x.  j )  +  1 ) )
4140necomd 2728 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  =/=  0 )
4225, 41reccld 10334 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  CC )
43 nncn 10564 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
4443adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  N  e.  CC )
4519, 44mulcld 9633 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  N
)  e.  CC )
46 1cnd 9629 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  CC )
4745, 46addcld 9632 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  e.  CC )
4827a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
49 nnre 10563 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
5048, 49remulcld 9641 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
51 1red 9628 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  1  e.  RR )
5232a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  2 )
53 0red 9614 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  e.  RR )
54 nngt0 10585 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  <  N )
5553, 49, 54ltled 9750 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  N )
5648, 49, 52, 55mulge0d 10150 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
5736a1i 11 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <  1 )
5850, 51, 56, 57addgegt0d 10147 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
5958gt0ne0d 10138 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
6059adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  =/=  0 )
6147, 60reccld 10334 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  N
)  +  1 ) )  e.  CC )
62 2nn0 10833 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
6362a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  NN0 )
6463, 18nn0mulcld 10878 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  j
)  e.  NN0 )
65 1nn0 10832 . . . . . . . . . . . . . 14  |-  1  e.  NN0
6665a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  NN0 )
6764, 66nn0addcld 10877 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  NN0 )
6861, 67expcld 12313 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) )  e.  CC )
6942, 68mulcld 9633 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
7019, 69mulcld 9633 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) )  e.  CC )
7110, 17, 18, 70fvmptd 5961 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) ) )
7271, 70eqeltrd 2545 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  e.  CC )
739stirlinglem6 32043 . . . . . . 7  |-  ( N  e.  NN  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
746, 8, 72, 73clim2ser 13489 . . . . . 6  |-  ( N  e.  NN  ->  seq ( 0  +  1 ) (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq 0
(  +  ,  H
) `  0 )
) )
755, 74eqbrtrd 4476 . . . . 5  |-  ( N  e.  NN  ->  seq 1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq 0
(  +  ,  H
) `  0 )
) )
76 0z 10896 . . . . . . . 8  |-  0  e.  ZZ
77 seq1 12123 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (  seq 0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
7876, 77mp1i 12 . . . . . . 7  |-  ( N  e.  NN  ->  (  seq 0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
799a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  H  =  ( k  e. 
NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
80 simpr 461 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  k  =  0 )
8180oveq2d 6312 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  k )  =  ( 2  x.  0 ) )
8281oveq1d 6311 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
8382oveq2d 6312 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 1  / 
( ( 2  x.  k )  +  1 ) )  =  ( 1  /  ( ( 2  x.  0 )  +  1 ) ) )
8482oveq2d 6312 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )
8583, 84oveq12d 6314 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) )  =  ( ( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) )
8685oveq2d 6312 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) ) )
87 2cnd 10629 . . . . . . . . 9  |-  ( N  e.  NN  ->  2  e.  CC )
88 0cnd 9606 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  e.  CC )
8987, 88mulcld 9633 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  0 )  e.  CC )
90 1cnd 9629 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  e.  CC )
9189, 90addcld 9632 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  CC )
9287mul01d 9796 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
2  x.  0 )  =  0 )
9392eqcomd 2465 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  =  ( 2  x.  0 ) )
9493oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
0  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
954, 94eqtrd 2498 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  =  ( ( 2  x.  0 )  +  1 ) )
9657, 95breqtrd 4480 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  0 )  +  1 ) )
9796gt0ne0d 10138 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =/=  0 )
9891, 97reccld 10334 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  e.  CC )
9987, 43mulcld 9633 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
10099, 90addcld 9632 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
101100, 59reccld 10334 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
10295, 65syl6eqelr 2554 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  NN0 )
103101, 102expcld 12313 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  e.  CC )
10498, 103mulcld 9633 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  e.  CC )
10587, 104mulcld 9633 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  e.  CC )
10679, 86, 8, 105fvmptd 5961 . . . . . . 7  |-  ( N  e.  NN  ->  ( H `  0 )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  0 )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) ) )
10792oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  ( 0  +  1 ) )
108107, 3syl6eqr 2516 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  1 )
109108oveq2d 6312 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
1 ) )
11090div1d 10333 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  1 )  =  1 )
111109, 110eqtrd 2498 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  1 )
112108oveq2d 6312 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
1 ) )
113101exp1d 12308 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ 1 )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
114112, 113eqtrd 2498 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
115111, 114oveq12d 6314 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
116101mulid2d 9631 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
117115, 116eqtrd 2498 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
118117oveq2d 6312 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
11987, 90, 100, 59divassd 10376 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
12087mulid1d 9630 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  1 )  =  2 )
121120oveq1d 6311 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
122118, 119, 1213eqtr2d 2504 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
12378, 106, 1223eqtrd 2502 . . . . . 6  |-  ( N  e.  NN  ->  (  seq 0 (  +  ,  H ) `  0
)  =  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )
124123oveq2d 6312 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  -  (  seq 0 (  +  ,  H ) `  0
) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) )
12575, 124breqtrd 4480 . . . 4  |-  ( N  e.  NN  ->  seq 1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )
12690, 99addcld 9632 . . . . 5  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
127126halfcld 10804 . . . 4  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
128 seqex 12112 . . . . 5  |-  seq 1
(  +  ,  K
)  e.  _V
129128a1i 11 . . . 4  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  e.  _V )
130 elnnuz 11142 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
131130biimpi 194 . . . . . 6  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
132131adantl 466 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
1339a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
134 oveq2 6304 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
135134oveq1d 6311 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
136135oveq2d 6312 . . . . . . . . . 10  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
137135oveq2d 6312 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )
138136, 137oveq12d 6314 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )
139138oveq2d 6312 . . . . . . . 8  |-  ( k  =  n  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
140139adantl 466 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
141 elfzuz 11709 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ( ZZ>= `  1 )
)
142 elnnuz 11142 . . . . . . . . . 10  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
143142biimpri 206 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
144 nnnn0 10823 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
145141, 143, 1443syl 20 . . . . . . . 8  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN0 )
146145adantl 466 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
147 2cnd 10629 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
148146nn0cnd 10875 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
149147, 148mulcld 9633 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
150 1cnd 9629 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
151149, 150addcld 9632 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  CC )
152 elfznn 11739 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
153 0red 9614 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  e.  RR )
154 1red 9628 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  e.  RR )
15527a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR )
156 nnre 10563 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
157155, 156remulcld 9641 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
158157, 154readdcld 9640 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
15936a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <  1 )
160 2rp 11250 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
161160a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR+ )
162 nnrp 11254 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR+ )
163161, 162rpmulcld 11297 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
164154, 163ltaddrp2d 11311 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
165153, 154, 158, 159, 164lttrd 9760 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
166165gt0ne0d 10138 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
167152, 166syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
168167adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  =/=  0 )
169151, 168reccld 10334 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  CC )
170101ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
17162a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
172171, 146nn0mulcld 10878 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e. 
NN0 )
17365a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  NN0 )
174172, 173nn0addcld 10877 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e. 
NN0 )
175170, 174expcld 12313 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
176169, 175mulcld 9633 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  e.  CC )
177147, 176mulcld 9633 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  e.  CC )
178133, 140, 146, 177fvmptd 5961 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) ) )
179178, 177eqeltrd 2545 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  e.  CC )
180 addcl 9591 . . . . . 6  |-  ( ( n  e.  CC  /\  i  e.  CC )  ->  ( n  +  i )  e.  CC )
181180adantl 466 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( n  +  i )  e.  CC )
182132, 179, 181seqcl 12130 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  H ) `
 j )  e.  CC )
183 1cnd 9629 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
1  e.  CC )
184 2cnd 10629 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
2  e.  CC )
18543ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  N  e.  CC )
186184, 185mulcld 9633 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 2  x.  N
)  e.  CC )
187183, 186addcld 9632 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 1  +  ( 2  x.  N ) )  e.  CC )
188187halfcld 10804 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( 1  +  ( 2  x.  N
) )  /  2
)  e.  CC )
189 simprl 756 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  n  e.  CC )
190 simprr 757 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
i  e.  CC )
191188, 189, 190adddid 9637 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (
n  +  i ) )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  n )  +  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  i ) ) )
192 stirlinglem7.2 . . . . . . . 8  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
193192a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
194134oveq2d 6312 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
195136, 194oveq12d 6314 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
196195adantl 466 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
197152adantl 466 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
198170, 172expcld 12313 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  CC )
199169, 198mulcld 9633 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  CC )
200193, 196, 197, 199fvmptd 5961 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
201126ad2antrr 725 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  e.  CC )
202 2ne0 10649 . . . . . . . . 9  |-  2  =/=  0
203202a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  =/=  0 )
204201, 147, 177, 203div32d 10364 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 2  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )  /  2 ) ) )
205176, 147, 203divcan3d 10346 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) )  /  2 )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
206205oveq2d 6312 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  / 
2 ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
207201, 169, 175mul12d 9806 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
208100ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  e.  CC )
20959ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  =/=  0 )
210174nn0zd 10988 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  ZZ )
211208, 209, 210exprecd 12321 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
212211oveq2d 6312 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
213208, 174expcld 12313 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
214208, 209, 210expne0d 12319 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =/=  0 )
215201, 213, 214divrecd 10344 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
21643ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
217147, 216mulcld 9633 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
218150, 217addcomd 9799 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
219208, 172expcld 12313 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  e.  CC )
220219, 208mulcomd 9634 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
221218, 220oveq12d 6314 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
222208, 172expp1d 12314 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  x.  (
( 2  x.  N
)  +  1 ) ) )
223222oveq2d 6312 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  /  (
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) ) )
224 2z 10917 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
225224a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
226146nn0zd 10988 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
227225, 226zmulcld 10996 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  ZZ )
228208, 209, 227expne0d 12319 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  =/=  0 )
229208, 208, 219, 209, 228divdiv1d 10372 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
230221, 223, 2293eqtr4d 2508 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
231212, 215, 2303eqtr2d 2504 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
232231oveq2d 6312 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  +  ( 2  x.  N ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
233208, 209dividd 10339 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  1 )
234 1exp 12198 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
235227, 234syl 16 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n ) )  =  1 )
236233, 235eqtr4d 2501 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 1 ^ (
2  x.  n ) ) )
237236oveq1d 6311 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
238150, 208, 209, 172expdivd 12327 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
239237, 238eqtr4d 2501 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )
240239oveq2d 6312 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
241207, 232, 2403eqtrd 2502 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
242204, 206, 2413eqtrd 2502 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
243178eqcomd 2465 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( H `  n
) )
244243oveq2d 6312 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( H `  n )
) )
245200, 242, 2443eqtr2d 2504 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( H `
 n ) ) )
246181, 191, 132, 179, 245seqdistr 12161 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  K ) `
 j )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (  seq 1 (  +  ,  H ) `  j
) ) )
2471, 2, 125, 127, 129, 182, 246climmulc2 13471 . . 3  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( ( log `  ( ( N  + 
1 )  /  N
) )  -  (
2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
24890, 99addcomd 9799 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
249248oveq1d 6311 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )
250249oveq1d 6311 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
251249, 127eqeltrrd 2546 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  e.  CC )
25243, 90addcld 9632 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
253 nnne0 10589 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
254252, 43, 253divcld 10341 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
25549, 51readdcld 9640 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
25649ltp1d 10496 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
25753, 49, 255, 54, 256lttrd 9760 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
258257gt0ne0d 10138 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
259252, 43, 258, 253divne0d 10357 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
260254, 259logcld 23084 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
26187, 100, 59divcld 10341 . . . . 5  |-  ( N  e.  NN  ->  (
2  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
262251, 260, 261subdid 10033 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
26399, 90addcomd 9799 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =  ( 1  +  ( 2  x.  N
) ) )
264263oveq1d 6311 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
265264oveq1d 6311 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
266202a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  =/=  0 )
267100, 87, 59, 266divcan6d 10360 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )  =  1 )
268265, 267oveq12d 6314 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( 2  /  (
( 2  x.  N
)  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
269250, 262, 2683eqtrd 2502 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
270247, 269breqtrd 4480 . 2  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
271 stirlinglem7.1 . . . 4  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
272271a1i 11 . . 3  |-  ( N  e.  NN  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) ) )
273 oveq2 6304 . . . . . . . 8  |-  ( n  =  N  ->  (
2  x.  n )  =  ( 2  x.  N ) )
274273oveq2d 6312 . . . . . . 7  |-  ( n  =  N  ->  (
1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N
) ) )
275274oveq1d 6311 . . . . . 6  |-  ( n  =  N  ->  (
( 1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
276 oveq1 6303 . . . . . . . 8  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
277 id 22 . . . . . . . 8  |-  ( n  =  N  ->  n  =  N )
278276, 277oveq12d 6314 . . . . . . 7  |-  ( n  =  N  ->  (
( n  +  1 )  /  n )  =  ( ( N  +  1 )  /  N ) )
279278fveq2d 5876 . . . . . 6  |-  ( n  =  N  ->  ( log `  ( ( n  +  1 )  /  n ) )  =  ( log `  (
( N  +  1 )  /  N ) ) )
280275, 279oveq12d 6314 . . . . 5  |-  ( n  =  N  ->  (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
281280oveq1d 6311 . . . 4  |-  ( n  =  N  ->  (
( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
282281adantl 466 . . 3  |-  ( ( N  e.  NN  /\  n  =  N )  ->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
283 id 22 . . 3  |-  ( N  e.  NN  ->  N  e.  NN )
284127, 260mulcld 9633 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
285284, 90subcld 9950 . . 3  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
286272, 282, 283, 285fvmptd 5961 . 2  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
287270, 286breqtrrd 4482 1  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( J `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   _Vcvv 3109   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697    seqcseq 12110   ^cexp 12169    ~~> cli 13319   logclog 23068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-shft 12912  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324  df-sum 13521  df-ef 13815  df-sin 13817  df-cos 13818  df-tan 13819  df-pi 13820  df-dvds 13999  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-mulg 16187  df-cntz 16482  df-cmn 16927  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lp 19764  df-perf 19765  df-cn 19855  df-cnp 19856  df-haus 19943  df-cmp 20014  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cncf 21508  df-limc 22396  df-dv 22397  df-ulm 22898  df-log 23070
This theorem is referenced by:  stirlinglem9  32046
  Copyright terms: Public domain W3C validator