Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem7 Structured version   Unicode version

Theorem stirlinglem7 31408
Description: Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem7.1  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
stirlinglem7.2  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem7.3  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
Assertion
Ref Expression
stirlinglem7  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( J `
 N ) )
Distinct variable groups:    k, n    n, H    n, K    k, N, n
Allowed substitution hints:    H( k)    J( k, n)    K( k)

Proof of Theorem stirlinglem7
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11117 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10894 . . . . 5  |-  1  e.  ZZ
32a1i 11 . . . 4  |-  ( N  e.  NN  ->  1  e.  ZZ )
4 1e0p1 11004 . . . . . . . 8  |-  1  =  ( 0  +  1 )
54a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( 0  +  1 ) )
65seqeq1d 12081 . . . . . 6  |-  ( N  e.  NN  ->  seq 1 (  +  ,  H )  =  seq ( 0  +  1 ) (  +  ,  H ) )
7 nn0uz 11116 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
8 0nn0 10810 . . . . . . . 8  |-  0  e.  NN0
98a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  NN0 )
10 stirlinglem7.3 . . . . . . . . . 10  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
1110a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
12 oveq2 6292 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
1312oveq1d 6299 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
1413oveq2d 6300 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  j )  +  1 ) ) )
1513oveq2d 6300 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  j )  +  1 ) ) )
1614, 15oveq12d 6302 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) )
1716oveq2d 6300 . . . . . . . . . 10  |-  ( k  =  j  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
1817adantl 466 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN0 )  /\  k  =  j
)  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
19 simpr 461 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
20 2cnd 10608 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  CC )
21 2cnd 10608 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  2  e.  CC )
22 nn0cn 10805 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  j  e.  CC )
2321, 22mulcld 9616 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  CC )
24 ax-1cn 9550 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2524a1i 11 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  1  e.  CC )
2623, 25addcld 9615 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  CC )
2726adantl 466 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  CC )
28 0re 9596 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
2928a1i 11 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  e.  RR )
30 2re 10605 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
3130a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  2  e.  RR )
32 nn0re 10804 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  j  e.  RR )
3331, 32remulcld 9624 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  RR )
34 1re 9595 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
3534a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  1  e.  RR )
36 0le2 10626 . . . . . . . . . . . . . . . . . 18  |-  0  <_  2
3736a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  0  <_ 
2 )
38 nn0ge0 10821 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  0  <_ 
j )
3931, 32, 37, 38mulge0d 10129 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <_ 
( 2  x.  j
) )
40 0lt1 10075 . . . . . . . . . . . . . . . . 17  |-  0  <  1
4140a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <  1 )
4233, 35, 39, 41addgegt0d 10126 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  < 
( ( 2  x.  j )  +  1 ) )
4329, 42ltned 9720 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  0  =/=  ( ( 2  x.  j )  +  1 ) )
4443adantl 466 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
0  =/=  ( ( 2  x.  j )  +  1 ) )
4544necomd 2738 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  =/=  0 )
4627, 45reccld 10313 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  CC )
47 nncn 10544 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
4847adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  N  e.  CC )
4920, 48mulcld 9616 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  N
)  e.  CC )
5024a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  CC )
5149, 50addcld 9615 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  e.  CC )
5230a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
53 nnre 10543 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
5452, 53remulcld 9624 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
5534a1i 11 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  1  e.  RR )
5636a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  2 )
5728a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  e.  RR )
58 nngt0 10565 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  <  N )
5957, 53, 58ltled 9732 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  N )
6052, 53, 56, 59mulge0d 10129 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
6140a1i 11 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <  1 )
6254, 55, 60, 61addgegt0d 10126 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
6362gt0ne0d 10117 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
6463adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  =/=  0 )
6551, 64reccld 10313 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  N
)  +  1 ) )  e.  CC )
66 2nn0 10812 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
6766a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  NN0 )
6867, 19nn0mulcld 10857 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  j
)  e.  NN0 )
69 1nn0 10811 . . . . . . . . . . . . . 14  |-  1  e.  NN0
7069a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  NN0 )
7168, 70nn0addcld 10856 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  NN0 )
7265, 71expcld 12278 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) )  e.  CC )
7346, 72mulcld 9616 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
7420, 73mulcld 9616 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) )  e.  CC )
7511, 18, 19, 74fvmptd 5955 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) ) )
7675, 74eqeltrd 2555 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  e.  CC )
7710stirlinglem6 31407 . . . . . . 7  |-  ( N  e.  NN  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
787, 9, 76, 77clim2ser 13440 . . . . . 6  |-  ( N  e.  NN  ->  seq ( 0  +  1 ) (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq 0
(  +  ,  H
) `  0 )
) )
796, 78eqbrtrd 4467 . . . . 5  |-  ( N  e.  NN  ->  seq 1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq 0
(  +  ,  H
) `  0 )
) )
80 0z 10875 . . . . . . . 8  |-  0  e.  ZZ
81 seq1 12088 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (  seq 0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
8280, 81mp1i 12 . . . . . . 7  |-  ( N  e.  NN  ->  (  seq 0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
8310a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  H  =  ( k  e. 
NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
84 simpr 461 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  k  =  0 )
8584oveq2d 6300 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  k )  =  ( 2  x.  0 ) )
8685oveq1d 6299 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
8786oveq2d 6300 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 1  / 
( ( 2  x.  k )  +  1 ) )  =  ( 1  /  ( ( 2  x.  0 )  +  1 ) ) )
8886oveq2d 6300 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )
8987, 88oveq12d 6302 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) )  =  ( ( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) )
9089oveq2d 6300 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) ) )
91 2cnd 10608 . . . . . . . . 9  |-  ( N  e.  NN  ->  2  e.  CC )
92 0cnd 9589 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  e.  CC )
9391, 92mulcld 9616 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  0 )  e.  CC )
9424a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  e.  CC )
9593, 94addcld 9615 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  CC )
9691mul01d 9778 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
2  x.  0 )  =  0 )
9796eqcomd 2475 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  =  ( 2  x.  0 ) )
9897oveq1d 6299 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
0  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
995, 98eqtrd 2508 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  =  ( ( 2  x.  0 )  +  1 ) )
10061, 99breqtrd 4471 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  0 )  +  1 ) )
101100gt0ne0d 10117 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =/=  0 )
10295, 101reccld 10313 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  e.  CC )
10391, 47mulcld 9616 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
104103, 94addcld 9615 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
105104, 63reccld 10313 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
10699, 69syl6eqelr 2564 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  NN0 )
107105, 106expcld 12278 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  e.  CC )
108102, 107mulcld 9616 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  e.  CC )
10991, 108mulcld 9616 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  e.  CC )
11083, 90, 9, 109fvmptd 5955 . . . . . . 7  |-  ( N  e.  NN  ->  ( H `  0 )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  0 )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) ) )
11196oveq1d 6299 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  ( 0  +  1 ) )
112111, 4syl6eqr 2526 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  1 )
113112oveq2d 6300 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
1 ) )
11494div1d 10312 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  1 )  =  1 )
115113, 114eqtrd 2508 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  1 )
116112oveq2d 6300 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
1 ) )
117105exp1d 12273 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ 1 )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
118116, 117eqtrd 2508 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
119115, 118oveq12d 6302 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
120105mulid2d 9614 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
121119, 120eqtrd 2508 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
122121oveq2d 6300 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
12391, 94, 104, 63divassd 10355 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
12491mulid1d 9613 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  1 )  =  2 )
125124oveq1d 6299 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
126122, 123, 1253eqtr2d 2514 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
12782, 110, 1263eqtrd 2512 . . . . . 6  |-  ( N  e.  NN  ->  (  seq 0 (  +  ,  H ) `  0
)  =  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )
128127oveq2d 6300 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  -  (  seq 0 (  +  ,  H ) `  0
) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) )
12979, 128breqtrd 4471 . . . 4  |-  ( N  e.  NN  ->  seq 1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )
13094, 103addcld 9615 . . . . 5  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
131130halfcld 10783 . . . 4  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
132 seqex 12077 . . . . 5  |-  seq 1
(  +  ,  K
)  e.  _V
133132a1i 11 . . . 4  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  e.  _V )
134 elnnuz 11118 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
135134biimpi 194 . . . . . 6  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
136135adantl 466 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
13710a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
138 oveq2 6292 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
139138oveq1d 6299 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
140139oveq2d 6300 . . . . . . . . . 10  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
141139oveq2d 6300 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )
142140, 141oveq12d 6302 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )
143142oveq2d 6300 . . . . . . . 8  |-  ( k  =  n  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
144143adantl 466 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
145 elfzuz 11684 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ( ZZ>= `  1 )
)
146 elnnuz 11118 . . . . . . . . . 10  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
147146biimpri 206 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
148 nnnn0 10802 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
149145, 147, 1483syl 20 . . . . . . . 8  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN0 )
150149adantl 466 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
151 2cnd 10608 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
152150nn0cnd 10854 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
153151, 152mulcld 9616 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
15424a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
155153, 154addcld 9615 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  CC )
156 elfznn 11714 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
15728a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  e.  RR )
15834a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  e.  RR )
15930a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR )
160 nnre 10543 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
161159, 160remulcld 9624 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
162161, 158readdcld 9623 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
16340a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <  1 )
164 2rp 11225 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
165164a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR+ )
166 nnrp 11229 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR+ )
167165, 166rpmulcld 11272 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
168158, 167ltaddrp2d 11286 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
169157, 158, 162, 163, 168lttrd 9742 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
170169gt0ne0d 10117 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
171156, 170syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
172171adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  =/=  0 )
173155, 172reccld 10313 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  CC )
174105ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
17566a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
176175, 150nn0mulcld 10857 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e. 
NN0 )
17769a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  NN0 )
178176, 177nn0addcld 10856 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e. 
NN0 )
179174, 178expcld 12278 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
180173, 179mulcld 9616 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  e.  CC )
181151, 180mulcld 9616 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  e.  CC )
182137, 144, 150, 181fvmptd 5955 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) ) )
183182, 181eqeltrd 2555 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  e.  CC )
184 addcl 9574 . . . . . 6  |-  ( ( n  e.  CC  /\  i  e.  CC )  ->  ( n  +  i )  e.  CC )
185184adantl 466 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( n  +  i )  e.  CC )
186136, 183, 185seqcl 12095 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  H ) `
 j )  e.  CC )
18724a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
1  e.  CC )
188 2cnd 10608 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
2  e.  CC )
18947ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  N  e.  CC )
190188, 189mulcld 9616 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 2  x.  N
)  e.  CC )
191187, 190addcld 9615 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 1  +  ( 2  x.  N ) )  e.  CC )
192191halfcld 10783 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( 1  +  ( 2  x.  N
) )  /  2
)  e.  CC )
193 simprl 755 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  n  e.  CC )
194 simprr 756 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
i  e.  CC )
195192, 193, 194adddid 9620 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (
n  +  i ) )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  n )  +  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  i ) ) )
196 stirlinglem7.2 . . . . . . . 8  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
197196a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
198138oveq2d 6300 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
199140, 198oveq12d 6302 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
200199adantl 466 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
201156adantl 466 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
202174, 176expcld 12278 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  CC )
203173, 202mulcld 9616 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  CC )
204197, 200, 201, 203fvmptd 5955 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
205130ad2antrr 725 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  e.  CC )
206 2ne0 10628 . . . . . . . . 9  |-  2  =/=  0
207206a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  =/=  0 )
208205, 151, 181, 207div32d 10343 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 2  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )  /  2 ) ) )
209180, 151, 207divcan3d 10325 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) )  /  2 )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
210209oveq2d 6300 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  / 
2 ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
211205, 173, 179mul12d 9788 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
212104ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  e.  CC )
21363ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  =/=  0 )
214178nn0zd 10964 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  ZZ )
215212, 213, 214exprecd 12286 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
216215oveq2d 6300 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
217212, 178expcld 12278 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
218212, 213, 214expne0d 12284 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =/=  0 )
219205, 217, 218divrecd 10323 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
22047ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
221151, 220mulcld 9616 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
222154, 221addcomd 9781 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
223212, 176expcld 12278 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  e.  CC )
224223, 212mulcomd 9617 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
225222, 224oveq12d 6302 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
226212, 176expp1d 12279 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  x.  (
( 2  x.  N
)  +  1 ) ) )
227226oveq2d 6300 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  /  (
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) ) )
228 2z 10896 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
229228a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
230150nn0zd 10964 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
231229, 230zmulcld 10972 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  ZZ )
232212, 213, 231expne0d 12284 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  =/=  0 )
233212, 212, 223, 213, 232divdiv1d 10351 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
234225, 227, 2333eqtr4d 2518 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
235216, 219, 2343eqtr2d 2514 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
236235oveq2d 6300 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  +  ( 2  x.  N ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
237212, 213dividd 10318 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  1 )
238 1exp 12163 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
239231, 238syl 16 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n ) )  =  1 )
240237, 239eqtr4d 2511 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 1 ^ (
2  x.  n ) ) )
241240oveq1d 6299 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
242154, 212, 213, 176expdivd 12292 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
243241, 242eqtr4d 2511 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )
244243oveq2d 6300 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
245211, 236, 2443eqtrd 2512 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
246208, 210, 2453eqtrd 2512 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
247182eqcomd 2475 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( H `  n
) )
248247oveq2d 6300 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( H `  n )
) )
249204, 246, 2483eqtr2d 2514 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( H `
 n ) ) )
250185, 195, 136, 183, 249seqdistr 12126 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  K ) `
 j )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (  seq 1 (  +  ,  H ) `  j
) ) )
2511, 3, 129, 131, 133, 186, 250climmulc2 13422 . . 3  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( ( log `  ( ( N  + 
1 )  /  N
) )  -  (
2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
25294, 103addcomd 9781 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
253252oveq1d 6299 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )
254253oveq1d 6299 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
255253, 131eqeltrrd 2556 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  e.  CC )
25647, 94addcld 9615 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
257 nnne0 10568 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
258256, 47, 257divcld 10320 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
25953, 55readdcld 9623 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
26053ltp1d 10476 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
26157, 53, 259, 58, 260lttrd 9742 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
262261gt0ne0d 10117 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
263256, 47, 262, 257divne0d 10336 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
264258, 263logcld 22714 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
26591, 104, 63divcld 10320 . . . . 5  |-  ( N  e.  NN  ->  (
2  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
266255, 264, 265subdid 10012 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
267103, 94addcomd 9781 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =  ( 1  +  ( 2  x.  N
) ) )
268267oveq1d 6299 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
269268oveq1d 6299 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
270206a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  =/=  0 )
271104, 91, 63, 270divcan6d 10339 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )  =  1 )
272269, 271oveq12d 6302 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( 2  /  (
( 2  x.  N
)  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
273254, 266, 2723eqtrd 2512 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
274251, 273breqtrd 4471 . 2  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
275 stirlinglem7.1 . . . 4  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
276275a1i 11 . . 3  |-  ( N  e.  NN  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) ) )
277 oveq2 6292 . . . . . . . 8  |-  ( n  =  N  ->  (
2  x.  n )  =  ( 2  x.  N ) )
278277oveq2d 6300 . . . . . . 7  |-  ( n  =  N  ->  (
1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N
) ) )
279278oveq1d 6299 . . . . . 6  |-  ( n  =  N  ->  (
( 1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
280 oveq1 6291 . . . . . . . 8  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
281 id 22 . . . . . . . 8  |-  ( n  =  N  ->  n  =  N )
282280, 281oveq12d 6302 . . . . . . 7  |-  ( n  =  N  ->  (
( n  +  1 )  /  n )  =  ( ( N  +  1 )  /  N ) )
283282fveq2d 5870 . . . . . 6  |-  ( n  =  N  ->  ( log `  ( ( n  +  1 )  /  n ) )  =  ( log `  (
( N  +  1 )  /  N ) ) )
284279, 283oveq12d 6302 . . . . 5  |-  ( n  =  N  ->  (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
285284oveq1d 6299 . . . 4  |-  ( n  =  N  ->  (
( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
286285adantl 466 . . 3  |-  ( ( N  e.  NN  /\  n  =  N )  ->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
287 id 22 . . 3  |-  ( N  e.  NN  ->  N  e.  NN )
288131, 264mulcld 9616 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
289288, 94subcld 9930 . . 3  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
290276, 286, 287, 289fvmptd 5955 . 2  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
291274, 290breqtrrd 4473 1  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( J `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   RR+crp 11220   ...cfz 11672    seqcseq 12075   ^cexp 12134    ~~> cli 13270   logclog 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-tan 13669  df-pi 13670  df-dvds 13848  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-ulm 22534  df-log 22700
This theorem is referenced by:  stirlinglem9  31410
  Copyright terms: Public domain W3C validator