Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Unicode version

Theorem stirlinglem6 29799
Description: A series that converges to log (N+1)/N (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
Assertion
Ref Expression
stirlinglem6  |-  ( N  e.  NN  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
Distinct variable group:    j, N
Allowed substitution hint:    H( j)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2441 . . 3  |-  ( j  e.  NN  |->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )  =  ( j  e.  NN  |->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )
2 eqid 2441 . . 3  |-  ( j  e.  NN  |->  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) )  =  ( j  e.  NN  |->  ( ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ j )  / 
j ) )
3 eqid 2441 . . 3  |-  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  -  1 ) )  x.  (
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ j
)  /  j ) )  +  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )  =  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  -  1 ) )  x.  (
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ j
)  /  j ) )  +  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )
4 stirlinglem6.1 . . 3  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
5 eqid 2441 . . 3  |-  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )  =  ( j  e. 
NN0  |->  ( ( 2  x.  j )  +  1 ) )
6 2re 10387 . . . . . . 7  |-  2  e.  RR
76a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  e.  RR )
8 nnre 10325 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
97, 8remulcld 9410 . . . . 5  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
10 0le2 10408 . . . . . . 7  |-  0  <_  2
1110a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  2 )
12 0re 9382 . . . . . . . 8  |-  0  e.  RR
1312a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  RR )
14 nngt0 10347 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
1513, 8, 14ltled 9518 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  N )
167, 8, 11, 15mulge0d 9912 . . . . 5  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
179, 16ge0p1rpd 11049 . . . 4  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR+ )
1817rpreccld 11033 . . 3  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR+ )
19 1re 9381 . . . . . . 7  |-  1  e.  RR
2019a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  RR )
2120renegcld 9771 . . . . 5  |-  ( N  e.  NN  ->  -u 1  e.  RR )
2218rpred 11023 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR )
23 neg1lt0 10424 . . . . . 6  |-  -u 1  <  0
2423a1i 11 . . . . 5  |-  ( N  e.  NN  ->  -u 1  <  0 )
2518rpgt0d 11026 . . . . 5  |-  ( N  e.  NN  ->  0  <  ( 1  /  (
( 2  x.  N
)  +  1 ) ) )
2621, 13, 22, 24, 25lttrd 9528 . . . 4  |-  ( N  e.  NN  ->  -u 1  <  ( 1  /  (
( 2  x.  N
)  +  1 ) ) )
27 1rp 10991 . . . . . 6  |-  1  e.  RR+
2827a1i 11 . . . . 5  |-  ( N  e.  NN  ->  1  e.  RR+ )
29 ax-1cn 9336 . . . . . . . 8  |-  1  e.  CC
3029a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  CC )
3130div1d 10095 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  1 )  =  1 )
32 2rp 10992 . . . . . . . . 9  |-  2  e.  RR+
3332a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  RR+ )
34 nnrp 10996 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR+ )
3533, 34rpmulcld 11039 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
3620, 35ltaddrp2d 11053 . . . . . 6  |-  ( N  e.  NN  ->  1  <  ( ( 2  x.  N )  +  1 ) )
3731, 36eqbrtrd 4309 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  1 )  <  ( ( 2  x.  N )  +  1 ) )
3828, 17, 37ltrec1d 11043 . . . 4  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  <  1 )
3922, 20absltd 12912 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  (
1  /  ( ( 2  x.  N )  +  1 ) ) )  <  1  <->  ( -u 1  <  ( 1  /  ( ( 2  x.  N )  +  1 ) )  /\  ( 1  /  (
( 2  x.  N
)  +  1 ) )  <  1 ) ) )
4026, 38, 39mpbir2and 908 . . 3  |-  ( N  e.  NN  ->  ( abs `  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )  <  1 )
411, 2, 3, 4, 5, 18, 40stirlinglem5 29798 . 2  |-  ( N  e.  NN  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( 1  +  ( 1  /  (
( 2  x.  N
)  +  1 ) ) )  /  (
1  -  ( 1  /  ( ( 2  x.  N )  +  1 ) ) ) ) ) )
42 2cnd 10390 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  CC )
43 nncn 10326 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
4442, 43mulcld 9402 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
4544, 30addcld 9401 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
469, 20readdcld 9409 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
47 2pos 10409 . . . . . . . . . . . 12  |-  0  <  2
4847a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  0  <  2 )
497, 8, 48, 14mulgt0d 9522 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  ( 2  x.  N
) )
509ltp1d 10259 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  <  ( ( 2  x.  N )  +  1 ) )
5113, 9, 46, 49, 50lttrd 9528 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
5251gt0ne0d 9900 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
5345, 52dividd 10101 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  1 )
5453eqcomd 2446 . . . . . 6  |-  ( N  e.  NN  ->  1  =  ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
5554oveq1d 6105 . . . . 5  |-  ( N  e.  NN  ->  (
1  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  +  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
5654oveq1d 6105 . . . . 5  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
5755, 56oveq12d 6108 . . . 4  |-  ( N  e.  NN  ->  (
( 1  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( 1  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  +  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )  / 
( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  -  (
1  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
5845, 30, 45, 52divdird 10141 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  +  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
5958eqcomd 2446 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  +  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
6045, 30, 45, 52divsubdird 10142 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  -  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
6160eqcomd 2446 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  -  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  -  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
6259, 61oveq12d 6108 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( ( ( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( ( ( 2  x.  N )  +  1 )  - 
1 )  /  (
( 2  x.  N
)  +  1 ) ) ) )
6344, 30, 30addassd 9404 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
64 1p1e2 10431 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
6564a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  +  1 )  =  2 )
6665oveq2d 6106 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  ( 1  +  1 ) )  =  ( ( 2  x.  N )  +  2 ) )
6742mulid1d 9399 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
2  x.  1 )  =  2 )
6867eqcomd 2446 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  =  ( 2  x.  1 ) )
6968oveq2d 6106 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  2 )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
7042, 43, 30adddid 9406 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
7169, 70eqtr4d 2476 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  2 )  =  ( 2  x.  ( N  +  1 ) ) )
7263, 66, 713eqtrd 2477 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( 2  x.  ( N  +  1 ) ) )
7372oveq1d 6105 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( 2  x.  ( N  + 
1 ) )  / 
( ( 2  x.  N )  +  1 ) ) )
7444, 30pncand 9716 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  -  1 )  =  ( 2  x.  N ) )
7574oveq1d 6105 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  -  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( 2  x.  N )  / 
( ( 2  x.  N )  +  1 ) ) )
7673, 75oveq12d 6108 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( ( ( 2  x.  N )  +  1 )  -  1 )  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( 2  x.  ( N  +  1 ) )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( 2  x.  N )  /  (
( 2  x.  N
)  +  1 ) ) ) )
7762, 76eqtrd 2473 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( ( ( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( 2  x.  ( N  +  1 ) )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( 2  x.  N )  /  (
( 2  x.  N
)  +  1 ) ) ) )
7843, 30addcld 9401 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
7942, 78mulcld 9402 . . . . . 6  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  e.  CC )
8049gt0ne0d 9900 . . . . . 6  |-  ( N  e.  NN  ->  (
2  x.  N )  =/=  0 )
8179, 44, 45, 80, 52divcan7d 10131 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  ( N  +  1 ) )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( 2  x.  N )  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( 2  x.  ( N  + 
1 ) )  / 
( 2  x.  N
) ) )
8248gt0ne0d 9900 . . . . . . 7  |-  ( N  e.  NN  ->  2  =/=  0 )
8314gt0ne0d 9900 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
8442, 42, 78, 43, 82, 83divmuldivd 10144 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  /  2
)  x.  ( ( N  +  1 )  /  N ) )  =  ( ( 2  x.  ( N  + 
1 ) )  / 
( 2  x.  N
) ) )
8584eqcomd 2446 . . . . 5  |-  ( N  e.  NN  ->  (
( 2  x.  ( N  +  1 ) )  /  ( 2  x.  N ) )  =  ( ( 2  /  2 )  x.  ( ( N  + 
1 )  /  N
) ) )
8642, 82dividd 10101 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  /  2 )  =  1 )
8786oveq1d 6105 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  /  2
)  x.  ( ( N  +  1 )  /  N ) )  =  ( 1  x.  ( ( N  + 
1 )  /  N
) ) )
8878, 43, 83divcld 10103 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
8988mulid2d 9400 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  /  N ) )  =  ( ( N  +  1 )  /  N ) )
9087, 89eqtrd 2473 . . . . 5  |-  ( N  e.  NN  ->  (
( 2  /  2
)  x.  ( ( N  +  1 )  /  N ) )  =  ( ( N  +  1 )  /  N ) )
9181, 85, 903eqtrd 2477 . . . 4  |-  ( N  e.  NN  ->  (
( ( 2  x.  ( N  +  1 ) )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( 2  x.  N )  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( N  +  1 )  /  N ) )
9257, 77, 913eqtrd 2477 . . 3  |-  ( N  e.  NN  ->  (
( 1  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( 1  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( N  +  1 )  /  N ) )
9392fveq2d 5692 . 2  |-  ( N  e.  NN  ->  ( log `  ( ( 1  +  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )  / 
( 1  -  (
1  /  ( ( 2  x.  N )  +  1 ) ) ) ) )  =  ( log `  (
( N  +  1 )  /  N ) ) )
9441, 93breqtrd 4313 1  |-  ( N  e.  NN  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 1761   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591   -ucneg 9592    / cdiv 9989   NNcn 10318   2c2 10367   NN0cn0 10575   RR+crp 10987    seqcseq 11802   ^cexp 11861   abscabs 12719    ~~> cli 12958   logclog 21965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-tan 13353  df-pi 13354  df-dvds 13532  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-cmp 18949  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-ulm 21801  df-log 21967
This theorem is referenced by:  stirlinglem7  29800
  Copyright terms: Public domain W3C validator