Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem5 Structured version   Visualization version   Unicode version

Theorem stirlinglem5 38052
Description: If  T is between  0 and  1, then a series (without alternating negative and positive terms) is given that converges to log (1+T)/(1-T) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem5.1  |-  D  =  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) )
stirlinglem5.2  |-  E  =  ( j  e.  NN  |->  ( ( T ^
j )  /  j
) )
stirlinglem5.3  |-  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) )
stirlinglem5.4  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
stirlinglem5.5  |-  G  =  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )
stirlinglem5.6  |-  ( ph  ->  T  e.  RR+ )
stirlinglem5.7  |-  ( ph  ->  ( abs `  T
)  <  1 )
Assertion
Ref Expression
stirlinglem5  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( 1  +  T )  /  (
1  -  T ) ) ) )
Distinct variable groups:    ph, j    T, j
Allowed substitution hints:    D( j)    E( j)    F( j)    G( j)    H( j)

Proof of Theorem stirlinglem5
Dummy variables  i 
k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11218 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10992 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
3 stirlinglem5.1 . . . . . . . . 9  |-  D  =  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) )
43a1i 11 . . . . . . . 8  |-  ( ph  ->  D  =  ( j  e.  NN  |->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) ) ) )
5 1cnd 9677 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN )  ->  1  e.  CC )
65negcld 9992 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  -u 1  e.  CC )
7 nnm1nn0 10935 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  (
j  -  1 )  e.  NN0 )
87adantl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  ( j  -  1 )  e. 
NN0 )
96, 8expcld 12454 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  ( -u
1 ^ ( j  -  1 ) )  e.  CC )
10 nncn 10639 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  j  e.  CC )
1110adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  CC )
12 stirlinglem5.6 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  e.  RR+ )
1312rpred 11364 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  RR )
1413recnd 9687 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  CC )
1514adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  T  e.  CC )
16 nnnn0 10900 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  j  e.  NN0 )
1716adantl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  j  e. 
NN0 )
1815, 17expcld 12454 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  ( T ^ j )  e.  CC )
19 nnne0 10664 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  j  =/=  0 )
2019adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  j  =/=  0 )
219, 11, 18, 20div32d 10428 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( ( -u 1 ^ ( j  -  1 ) )  /  j
)  x.  ( T ^ j ) )  =  ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) ) )
225, 15pncan2d 10007 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( 1  +  T )  -  1 )  =  T )
2322eqcomd 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  T  =  ( ( 1  +  T )  -  1 ) )
2423oveq1d 6323 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  ( T ^ j )  =  ( ( ( 1  +  T )  - 
1 ) ^ j
) )
2524oveq2d 6324 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( ( -u 1 ^ ( j  -  1 ) )  /  j
)  x.  ( T ^ j ) )  =  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) )
2621, 25eqtr3d 2507 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) )  =  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) )
2726mpteq2dva 4482 . . . . . . . 8  |-  ( ph  ->  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) )  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  - 
1 ) ^ j
) ) ) )
284, 27eqtrd 2505 . . . . . . 7  |-  ( ph  ->  D  =  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  -  1 ) )  /  j
)  x.  ( ( ( 1  +  T
)  -  1 ) ^ j ) ) ) )
2928seqeq3d 12259 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  D )  =  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) ) ) )
30 1cnd 9677 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
3130, 14addcld 9680 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  T
)  e.  CC )
32 eqid 2471 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3332cnmetdval 21869 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( 1  +  T
)  e.  CC )  ->  ( 1 ( abs  o.  -  )
( 1  +  T
) )  =  ( abs `  ( 1  -  ( 1  +  T ) ) ) )
3430, 31, 33syl2anc 673 . . . . . . . . 9  |-  ( ph  ->  ( 1 ( abs 
o.  -  ) (
1  +  T ) )  =  ( abs `  ( 1  -  (
1  +  T ) ) ) )
35 1m1e0 10700 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
3635a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  -  1 )  =  0 )
3736oveq1d 6323 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  -  1 )  -  T
)  =  ( 0  -  T ) )
3830, 30, 14subsub4d 10036 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  -  1 )  -  T
)  =  ( 1  -  ( 1  +  T ) ) )
39 df-neg 9883 . . . . . . . . . . . . . 14  |-  -u T  =  ( 0  -  T )
4039eqcomi 2480 . . . . . . . . . . . . 13  |-  ( 0  -  T )  = 
-u T
4140a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  -  T
)  =  -u T
)
4237, 38, 413eqtr3d 2513 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  -  (
1  +  T ) )  =  -u T
)
4342fveq2d 5883 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  (
1  -  ( 1  +  T ) ) )  =  ( abs `  -u T ) )
4414absnegd 13588 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  -u T
)  =  ( abs `  T ) )
45 stirlinglem5.7 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  T
)  <  1 )
4644, 45eqbrtrd 4416 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  -u T
)  <  1 )
4743, 46eqbrtrd 4416 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
1  -  ( 1  +  T ) ) )  <  1 )
4834, 47eqbrtrd 4416 . . . . . . . 8  |-  ( ph  ->  ( 1 ( abs 
o.  -  ) (
1  +  T ) )  <  1 )
49 cnxmet 21871 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
5049a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
51 1red 9676 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
5251rexrd 9708 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR* )
53 elbl2 21483 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  RR* )  /\  ( 1  e.  CC  /\  ( 1  +  T )  e.  CC ) )  -> 
( ( 1  +  T )  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( 1 ( abs  o.  -  ) ( 1  +  T ) )  <  1 ) )
5450, 52, 30, 31, 53syl22anc 1293 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  T )  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( 1 ( abs  o.  -  ) ( 1  +  T ) )  <  1 ) )
5548, 54mpbird 240 . . . . . . 7  |-  ( ph  ->  ( 1  +  T
)  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 ) )
56 eqid 2471 . . . . . . . 8  |-  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  =  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )
5756logtayl2 23686 . . . . . . 7  |-  ( ( 1  +  T )  e.  ( 1 (
ball `  ( abs  o. 
-  ) ) 1 )  ->  seq 1
(  +  ,  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  - 
1 ) )  / 
j )  x.  (
( ( 1  +  T )  -  1 ) ^ j ) ) ) )  ~~>  ( log `  ( 1  +  T
) ) )
5855, 57syl 17 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( (
-u 1 ^ (
j  -  1 ) )  /  j )  x.  ( ( ( 1  +  T )  -  1 ) ^
j ) ) ) )  ~~>  ( log `  (
1  +  T ) ) )
5929, 58eqbrtrd 4416 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  D )  ~~>  ( log `  ( 1  +  T
) ) )
60 seqex 12253 . . . . . 6  |-  seq 1
(  +  ,  F
)  e.  _V
6160a1i 11 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  F )  e. 
_V )
62 stirlinglem5.2 . . . . . . . 8  |-  E  =  ( j  e.  NN  |->  ( ( T ^
j )  /  j
) )
6362a1i 11 . . . . . . 7  |-  ( ph  ->  E  =  ( j  e.  NN  |->  ( ( T ^ j )  /  j ) ) )
6463seqeq3d 12259 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  E )  =  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( T ^ j )  / 
j ) ) ) )
65 logtayl 23684 . . . . . . 7  |-  ( ( T  e.  CC  /\  ( abs `  T )  <  1 )  ->  seq 1 (  +  , 
( j  e.  NN  |->  ( ( T ^
j )  /  j
) ) )  ~~>  -u ( log `  ( 1  -  T ) ) )
6614, 45, 65syl2anc 673 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  ( j  e.  NN  |->  ( ( T ^ j )  / 
j ) ) )  ~~> 
-u ( log `  (
1  -  T ) ) )
6764, 66eqbrtrd 4416 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  E )  ~~>  -u ( log `  ( 1  -  T ) ) )
68 simpr 468 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
6968, 1syl6eleq 2559 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
703a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  D  =  ( j  e.  NN  |->  ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) ) ) )
71 oveq1 6315 . . . . . . . . . . 11  |-  ( j  =  n  ->  (
j  -  1 )  =  ( n  - 
1 ) )
7271oveq2d 6324 . . . . . . . . . 10  |-  ( j  =  n  ->  ( -u 1 ^ ( j  -  1 ) )  =  ( -u 1 ^ ( n  - 
1 ) ) )
73 oveq2 6316 . . . . . . . . . . 11  |-  ( j  =  n  ->  ( T ^ j )  =  ( T ^ n
) )
74 id 22 . . . . . . . . . . 11  |-  ( j  =  n  ->  j  =  n )
7573, 74oveq12d 6326 . . . . . . . . . 10  |-  ( j  =  n  ->  (
( T ^ j
)  /  j )  =  ( ( T ^ n )  /  n ) )
7672, 75oveq12d 6326 . . . . . . . . 9  |-  ( j  =  n  ->  (
( -u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) )  =  ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) ) )
7776adantl 473 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  n  e.  (
1 ... k ) )  /\  j  =  n )  ->  ( ( -u 1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  =  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) ) )
78 elfznn 11854 . . . . . . . . 9  |-  ( n  e.  ( 1 ... k )  ->  n  e.  NN )
7978adantl 473 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  NN )
80 1cnd 9677 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  e.  CC )
8180negcld 9992 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  -u 1  e.  CC )
82 nnm1nn0 10935 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
8381, 82expcld 12454 . . . . . . . . . 10  |-  ( n  e.  NN  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
8479, 83syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
8514ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  T  e.  CC )
8679nnnn0d 10949 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  NN0 )
8785, 86expcld 12454 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( T ^ n )  e.  CC )
8879nncnd 10647 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  CC )
8979nnne0d 10676 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  =/=  0 )
9087, 88, 89divcld 10405 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( T ^ n
)  /  n )  e.  CC )
9184, 90mulcld 9681 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( -u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  e.  CC )
9270, 77, 79, 91fvmptd 5969 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( D `  n )  =  ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) ) )
9392, 91eqeltrd 2549 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( D `  n )  e.  CC )
94 addcl 9639 . . . . . . 7  |-  ( ( n  e.  CC  /\  i  e.  CC )  ->  ( n  +  i )  e.  CC )
9594adantl 473 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  CC  /\  i  e.  CC )
)  ->  ( n  +  i )  e.  CC )
9669, 93, 95seqcl 12271 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  D ) `  k
)  e.  CC )
9762a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  E  =  ( j  e.  NN  |->  ( ( T ^ j )  / 
j ) ) )
9875adantl 473 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  n  e.  (
1 ... k ) )  /\  j  =  n )  ->  ( ( T ^ j )  / 
j )  =  ( ( T ^ n
)  /  n ) )
9997, 98, 79, 90fvmptd 5969 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( E `  n )  =  ( ( T ^ n )  /  n ) )
10099, 90eqeltrd 2549 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( E `  n )  e.  CC )
10169, 100, 95seqcl 12271 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  E ) `  k
)  e.  CC )
102 simpll 768 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ph )
103 stirlinglem5.3 . . . . . . . . . 10  |-  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) )
104103a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) ) )
10576, 75oveq12d 6326 . . . . . . . . . 10  |-  ( j  =  n  ->  (
( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) )  +  ( ( T ^ j
)  /  j ) )  =  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
106105adantl 473 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  j  =  n )  ->  (
( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) )  +  ( ( T ^ j
)  /  j ) )  =  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
107 simpr 468 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
10883adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( -u
1 ^ ( n  -  1 ) )  e.  CC )
10914adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  T  e.  CC )
110107nnnn0d 10949 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
111109, 110expcld 12454 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( T ^ n )  e.  CC )
112107nncnd 10647 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
113107nnne0d 10676 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
114111, 112, 113divcld 10405 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( T ^ n )  /  n )  e.  CC )
115108, 114mulcld 9681 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
-u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  e.  CC )
116115, 114addcld 9680 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  e.  CC )
117104, 106, 107, 116fvmptd 5969 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  +  ( ( T ^
n )  /  n
) ) )
1183a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  D  =  ( j  e.  NN  |->  ( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) ) ) )
11976adantl 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  j  =  n )  ->  (
( -u 1 ^ (
j  -  1 ) )  x.  ( ( T ^ j )  /  j ) )  =  ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) ) )
120118, 119, 107, 115fvmptd 5969 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( D `
 n )  =  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) ) )
121120eqcomd 2477 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
-u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  =  ( D `  n ) )
12262a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  E  =  ( j  e.  NN  |->  ( ( T ^
j )  /  j
) ) )
12375adantl 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  j  =  n )  ->  (
( T ^ j
)  /  j )  =  ( ( T ^ n )  /  n ) )
124122, 123, 107, 114fvmptd 5969 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( E `
 n )  =  ( ( T ^
n )  /  n
) )
125124eqcomd 2477 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( T ^ n )  /  n )  =  ( E `  n
) )
126121, 125oveq12d 6326 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( -u 1 ^ ( n  -  1 ) )  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  =  ( ( D `
 n )  +  ( E `  n
) ) )
127117, 126eqtrd 2505 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( ( D `  n )  +  ( E `  n ) ) )
128102, 79, 127syl2anc 673 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  ( F `  n )  =  ( ( D `
 n )  +  ( E `  n
) ) )
12969, 93, 100, 128seradd 12293 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  k
)  =  ( (  seq 1 (  +  ,  D ) `  k )  +  (  seq 1 (  +  ,  E ) `  k ) ) )
1301, 2, 59, 61, 67, 96, 101, 129climadd 13772 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  ( ( log `  ( 1  +  T ) )  +  -u ( log `  (
1  -  T ) ) ) )
131 1rp 11329 . . . . . . . . 9  |-  1  e.  RR+
132131a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR+ )
133132, 12rpaddcld 11379 . . . . . . 7  |-  ( ph  ->  ( 1  +  T
)  e.  RR+ )
134133rpne0d 11369 . . . . . 6  |-  ( ph  ->  ( 1  +  T
)  =/=  0 )
13531, 134logcld 23599 . . . . 5  |-  ( ph  ->  ( log `  (
1  +  T ) )  e.  CC )
13630, 14subcld 10005 . . . . . 6  |-  ( ph  ->  ( 1  -  T
)  e.  CC )
13713, 51absltd 13568 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  T
)  <  1  <->  ( -u 1  <  T  /\  T  <  1 ) ) )
13845, 137mpbid 215 . . . . . . . . 9  |-  ( ph  ->  ( -u 1  < 
T  /\  T  <  1 ) )
139138simprd 470 . . . . . . . 8  |-  ( ph  ->  T  <  1 )
14013, 139gtned 9787 . . . . . . 7  |-  ( ph  ->  1  =/=  T )
14130, 14, 140subne0d 10014 . . . . . 6  |-  ( ph  ->  ( 1  -  T
)  =/=  0 )
142136, 141logcld 23599 . . . . 5  |-  ( ph  ->  ( log `  (
1  -  T ) )  e.  CC )
143135, 142negsubd 10011 . . . 4  |-  ( ph  ->  ( ( log `  (
1  +  T ) )  +  -u ( log `  ( 1  -  T ) ) )  =  ( ( log `  ( 1  +  T
) )  -  ( log `  ( 1  -  T ) ) ) )
144130, 143breqtrd 4420 . . 3  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  ( ( log `  ( 1  +  T ) )  -  ( log `  (
1  -  T ) ) ) )
145 nn0uz 11217 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
146 0zd 10973 . . . 4  |-  ( ph  ->  0  e.  ZZ )
147 stirlinglem5.5 . . . . . 6  |-  G  =  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )
148 2nn0 10910 . . . . . . . . 9  |-  2  e.  NN0
149148a1i 11 . . . . . . . 8  |-  ( j  e.  NN0  ->  2  e. 
NN0 )
150 id 22 . . . . . . . 8  |-  ( j  e.  NN0  ->  j  e. 
NN0 )
151149, 150nn0mulcld 10954 . . . . . . 7  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e. 
NN0 )
152 nn0p1nn 10933 . . . . . . 7  |-  ( ( 2  x.  j )  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  NN )
153151, 152syl 17 . . . . . 6  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  NN )
154147, 153fmpti 6060 . . . . 5  |-  G : NN0
--> NN
155154a1i 11 . . . 4  |-  ( ph  ->  G : NN0 --> NN )
156 2re 10701 . . . . . . . . 9  |-  2  e.  RR
157156a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  RR )
158 nn0re 10902 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  RR )
159157, 158remulcld 9689 . . . . . . 7  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e.  RR )
160 1red 9676 . . . . . . . . 9  |-  ( k  e.  NN0  ->  1  e.  RR )
161158, 160readdcld 9688 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
162157, 161remulcld 9689 . . . . . . 7  |-  ( k  e.  NN0  ->  ( 2  x.  ( k  +  1 ) )  e.  RR )
163 2rp 11330 . . . . . . . . 9  |-  2  e.  RR+
164163a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  RR+ )
165158ltp1d 10559 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  < 
( k  +  1 ) )
166158, 161, 164, 165ltmul2dd 11417 . . . . . . 7  |-  ( k  e.  NN0  ->  ( 2  x.  k )  < 
( 2  x.  (
k  +  1 ) ) )
167159, 162, 160, 166ltadd1dd 10245 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  < 
( ( 2  x.  ( k  +  1 ) )  +  1 ) )
168147a1i 11 . . . . . . 7  |-  ( k  e.  NN0  ->  G  =  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) ) )
169 simpr 468 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  j  =  k )  ->  j  =  k )
170169oveq2d 6324 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  j  =  k )  ->  ( 2  x.  j
)  =  ( 2  x.  k ) )
171170oveq1d 6323 . . . . . . 7  |-  ( ( k  e.  NN0  /\  j  =  k )  ->  ( ( 2  x.  j )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
172 id 22 . . . . . . 7  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
173 2cnd 10704 . . . . . . . . 9  |-  ( k  e.  NN0  ->  2  e.  CC )
174 nn0cn 10903 . . . . . . . . 9  |-  ( k  e.  NN0  ->  k  e.  CC )
175173, 174mulcld 9681 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e.  CC )
176 1cnd 9677 . . . . . . . 8  |-  ( k  e.  NN0  ->  1  e.  CC )
177175, 176addcld 9680 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  CC )
178168, 171, 172, 177fvmptd 5969 . . . . . 6  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( ( 2  x.  k )  +  1 ) )
179 simpr 468 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  j  =  ( k  +  1 ) )  ->  j  =  ( k  +  1 ) )
180179oveq2d 6324 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  j  =  ( k  +  1 ) )  ->  ( 2  x.  j )  =  ( 2  x.  ( k  +  1 ) ) )
181180oveq1d 6323 . . . . . . 7  |-  ( ( k  e.  NN0  /\  j  =  ( k  +  1 ) )  ->  ( ( 2  x.  j )  +  1 )  =  ( ( 2  x.  (
k  +  1 ) )  +  1 ) )
182 peano2nn0 10934 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
183174, 176addcld 9680 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
184173, 183mulcld 9681 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 2  x.  ( k  +  1 ) )  e.  CC )
185184, 176addcld 9680 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  x.  ( k  +  1 ) )  +  1 )  e.  CC )
186168, 181, 182, 185fvmptd 5969 . . . . . 6  |-  ( k  e.  NN0  ->  ( G `
 ( k  +  1 ) )  =  ( ( 2  x.  ( k  +  1 ) )  +  1 ) )
187167, 178, 1863brtr4d 4426 . . . . 5  |-  ( k  e.  NN0  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
188187adantl 473 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  <  ( G `  ( k  +  1 ) ) )
189 eldifi 3544 . . . . . . 7  |-  ( n  e.  ( NN  \  ran  G )  ->  n  e.  NN )
190189adantl 473 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  e.  NN )
191 1cnd 9677 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  1  e.  CC )
192191negcld 9992 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  -u 1  e.  CC )
193189, 82syl 17 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  -  1 )  e.  NN0 )
194192, 193expcld 12454 . . . . . . . . 9  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
195194adantl 473 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
19614adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  T  e.  CC )
197190nnnn0d 10949 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  e.  NN0 )
198196, 197expcld 12454 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( T ^ n )  e.  CC )
199190nncnd 10647 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  e.  CC )
200190nnne0d 10676 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  n  =/=  0 )
201198, 199, 200divcld 10405 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( T ^ n
)  /  n )  e.  CC )
202195, 201mulcld 9681 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  e.  CC )
203202, 201addcld 9680 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) )  +  ( ( T ^ n
)  /  n ) )  e.  CC )
204105, 103fvmptg 5961 . . . . . 6  |-  ( ( n  e.  NN  /\  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  +  ( ( T ^
n )  /  n
) )  e.  CC )  ->  ( F `  n )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) )  +  ( ( T ^ n
)  /  n ) ) )
205190, 203, 204syl2anc 673 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( F `  n )  =  ( ( (
-u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
206 eldifn 3545 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  n  e.  ran  G )
207 0nn0 10908 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
208 1nn0 10909 . . . . . . . . . . . . . . . . 17  |-  1  e.  NN0
209148, 208num0h 11084 . . . . . . . . . . . . . . . 16  |-  1  =  ( ( 2  x.  0 )  +  1 )
210 oveq2 6316 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  0  ->  (
2  x.  j )  =  ( 2  x.  0 ) )
211210oveq1d 6323 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  0  ->  (
( 2  x.  j
)  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
212211eqeq2d 2481 . . . . . . . . . . . . . . . . 17  |-  ( j  =  0  ->  (
1  =  ( ( 2  x.  j )  +  1 )  <->  1  =  ( ( 2  x.  0 )  +  1 ) ) )
213212rspcev 3136 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  NN0  /\  1  =  ( (
2  x.  0 )  +  1 ) )  ->  E. j  e.  NN0  1  =  ( (
2  x.  j )  +  1 ) )
214207, 209, 213mp2an 686 . . . . . . . . . . . . . . 15  |-  E. j  e.  NN0  1  =  ( ( 2  x.  j
)  +  1 )
215 ax-1cn 9615 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
216147elrnmpt 5087 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  CC  ->  (
1  e.  ran  G  <->  E. j  e.  NN0  1  =  ( ( 2  x.  j )  +  1 ) ) )
217215, 216ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ran  G  <->  E. j  e.  NN0  1  =  ( ( 2  x.  j
)  +  1 ) )
218214, 217mpbir 214 . . . . . . . . . . . . . 14  |-  1  e.  ran  G
219218a1i 11 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  1  e.  ran  G )
220 eleq1 2537 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
n  e.  ran  G  <->  1  e.  ran  G ) )
221219, 220mpbird 240 . . . . . . . . . . . 12  |-  ( n  =  1  ->  n  e.  ran  G )
222206, 221nsyl 125 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  n  =  1 )
223 nn1m1nn 10651 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  =  1  \/  ( n  -  1 )  e.  NN ) )
224189, 223syl 17 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  =  1  \/  ( n  -  1 )  e.  NN ) )
225224ord 384 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -.  n  =  1  ->  ( n  -  1 )  e.  NN ) )
226222, 225mpd 15 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  -  1 )  e.  NN )
227 nfcv 2612 . . . . . . . . . . . . . . . . . 18  |-  F/_ j NN
228 nfmpt1 4485 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ j
( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )
229147, 228nfcxfr 2610 . . . . . . . . . . . . . . . . . . 19  |-  F/_ j G
230229nfrn 5083 . . . . . . . . . . . . . . . . . 18  |-  F/_ j ran  G
231227, 230nfdif 3543 . . . . . . . . . . . . . . . . 17  |-  F/_ j
( NN  \  ran  G )
232231nfcri 2606 . . . . . . . . . . . . . . . 16  |-  F/ j  n  e.  ( NN 
\  ran  G )
233147elrnmpt 5087 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  e.  ran  G  <->  E. j  e.  NN0  n  =  ( ( 2  x.  j )  +  1 ) ) )
234206, 233mtbid 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  E. j  e.  NN0  n  =  ( ( 2  x.  j )  +  1 ) )
235 ralnex 2834 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. j  e.  NN0  -.  n  =  ( ( 2  x.  j )  +  1 )  <->  -.  E. j  e.  NN0  n  =  ( ( 2  x.  j
)  +  1 ) )
236234, 235sylibr 217 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( NN  \  ran  G )  ->  A. j  e.  NN0  -.  n  =  ( ( 2  x.  j )  +  1 ) )
237236r19.21bi 2776 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  NN0 )  ->  -.  n  =  ( ( 2  x.  j )  +  1 ) )
238237neqned 2650 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  NN0 )  ->  n  =/=  (
( 2  x.  j
)  +  1 ) )
239238necomd 2698 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  =/=  n
)
240239adantlr 729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  j  e.  NN0 )  ->  (
( 2  x.  j
)  +  1 )  =/=  n )
241 simplr 770 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  j  e.  ZZ )
242 simpr 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  -.  j  e.  NN0 )
243189ad2antrr 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  n  e.  NN )
244156a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  2  e.  RR )
245 simpl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  e.  ZZ )
246245zred 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  e.  RR )
247244, 246remulcld 9689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  x.  j )  e.  RR )
248 0red 9662 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  0  e.  RR )
249 1red 9676 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  1  e.  RR )
250 2cnd 10704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  2  e.  CC )
251246recnd 9687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  e.  CC )
252250, 251mulcomd 9682 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  x.  j )  =  ( j  x.  2 ) )
253 simpr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  j  e.  NN0 )
254 elnn0z 10974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( j  e.  NN0  <->  ( j  e.  ZZ  /\  0  <_ 
j ) )
255253, 254sylnib 311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  ( j  e.  ZZ  /\  0  <_ 
j ) )
256 nan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  ->  -.  ( j  e.  ZZ  /\  0  <_ 
j ) )  <->  ( (
( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  j  e.  ZZ )  ->  -.  0  <_  j ) )
257255, 256mpbi 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  j  e.  ZZ )  ->  -.  0  <_  j )
258257anabss1 830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  0  <_  j )
259246, 248ltnled 9799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( j  <  0  <->  -.  0  <_  j ) )
260258, 259mpbird 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  j  <  0
)
261163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  2  e.  RR+ )
262261rpregt0d 11370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  e.  RR  /\  0  <  2 ) )
263 mulltgt0 37406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( j  e.  RR  /\  j  <  0 )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( j  x.  2 )  <  0 )
264246, 260, 262, 263syl21anc 1291 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( j  x.  2 )  <  0
)
265252, 264eqbrtrd 4416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 2  x.  j )  <  0
)
266247, 248, 249, 265ltadd1dd 10245 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  <  (
0  +  1 ) )
267 1cnd 9677 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  1  e.  CC )
268267addid2d 9852 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( 0  +  1 )  =  1 )
269266, 268breqtrd 4420 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  <  1
)
270247, 249readdcld 9688 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( 2  x.  j )  +  1 )  e.  RR )
271270, 249ltnled 9799 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  ( ( ( 2  x.  j )  +  1 )  <  1  <->  -.  1  <_  ( ( 2  x.  j
)  +  1 ) ) )
272269, 271mpbid 215 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  1  <_  ( ( 2  x.  j
)  +  1 ) )
273 nnge1 10657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 2  x.  j
)  +  1 )  e.  NN  ->  1  <_  ( ( 2  x.  j )  +  1 ) )
274272, 273nsyl 125 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  ->  -.  ( (
2  x.  j )  +  1 )  e.  NN )
275274adantr 472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  n  e.  NN )  ->  -.  ( (
2  x.  j )  +  1 )  e.  NN )
276 simpr 468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e.  NN  /\  ( ( 2  x.  j )  +  1 )  =  n )  ->  ( ( 2  x.  j )  +  1 )  =  n )
277 simpl 464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e.  NN  /\  ( ( 2  x.  j )  +  1 )  =  n )  ->  n  e.  NN )
278276, 277eqeltrd 2549 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  e.  NN  /\  ( ( 2  x.  j )  +  1 )  =  n )  ->  ( ( 2  x.  j )  +  1 )  e.  NN )
279278adantll 728 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( j  e.  ZZ  /\  -.  j  e.  NN0 )  /\  n  e.  NN )  /\  (
( 2  x.  j
)  +  1 )  =  n )  -> 
( ( 2  x.  j )  +  1 )  e.  NN )
280275, 279mtand 671 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  n  e.  NN )  ->  -.  ( (
2  x.  j )  +  1 )  =  n )
281280neqned 2650 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( j  e.  ZZ  /\ 
-.  j  e.  NN0 )  /\  n  e.  NN )  ->  ( ( 2  x.  j )  +  1 )  =/=  n
)
282241, 242, 243, 281syl21anc 1291 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  ( NN  \  ran  G
)  /\  j  e.  ZZ )  /\  -.  j  e.  NN0 )  ->  (
( 2  x.  j
)  +  1 )  =/=  n )
283240, 282pm2.61dan 808 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  ZZ )  ->  ( ( 2  x.  j )  +  1 )  =/=  n
)
284283neneqd 2648 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( NN 
\  ran  G )  /\  j  e.  ZZ )  ->  -.  ( (
2  x.  j )  +  1 )  =  n )
285284ex 441 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( NN  \  ran  G )  ->  (
j  e.  ZZ  ->  -.  ( ( 2  x.  j )  +  1 )  =  n ) )
286232, 285ralrimi 2800 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( NN  \  ran  G )  ->  A. j  e.  ZZ  -.  ( ( 2  x.  j )  +  1 )  =  n )
287 ralnex 2834 . . . . . . . . . . . . . . 15  |-  ( A. j  e.  ZZ  -.  ( ( 2  x.  j )  +  1 )  =  n  <->  -.  E. j  e.  ZZ  ( ( 2  x.  j )  +  1 )  =  n )
288286, 287sylib 201 . . . . . . . . . . . . . 14  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  E. j  e.  ZZ  (
( 2  x.  j
)  +  1 )  =  n )
289189nnzd 11062 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( NN  \  ran  G )  ->  n  e.  ZZ )
290 odd2np1 14443 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  ( -.  2  ||  n  <->  E. j  e.  ZZ  ( ( 2  x.  j )  +  1 )  =  n ) )
291289, 290syl 17 . . . . . . . . . . . . . 14  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -.  2  ||  n  <->  E. j  e.  ZZ  ( ( 2  x.  j )  +  1 )  =  n ) )
292288, 291mtbird 308 . . . . . . . . . . . . 13  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  -.  2  ||  n )
293292notnotrd 117 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  2  ||  n )
294189nncnd 10647 . . . . . . . . . . . . 13  |-  ( n  e.  ( NN  \  ran  G )  ->  n  e.  CC )
295294, 191npcand 10009 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  (
( n  -  1 )  +  1 )  =  n )
296293, 295breqtrrd 4422 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  2  ||  ( ( n  - 
1 )  +  1 ) )
297193nn0zd 11061 . . . . . . . . . . . 12  |-  ( n  e.  ( NN  \  ran  G )  ->  (
n  -  1 )  e.  ZZ )
298 oddp1even 14445 . . . . . . . . . . . 12  |-  ( ( n  -  1 )  e.  ZZ  ->  ( -.  2  ||  ( n  -  1 )  <->  2  ||  ( ( n  - 
1 )  +  1 ) ) )
299297, 298syl 17 . . . . . . . . . . 11  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -.  2  ||  ( n  -  1 )  <->  2  ||  ( ( n  - 
1 )  +  1 ) ) )
300296, 299mpbird 240 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  -.  2  ||  ( n  - 
1 ) )
301 oexpneg 14446 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( n  -  1
)  e.  NN  /\  -.  2  ||  ( n  -  1 ) )  ->  ( -u 1 ^ ( n  - 
1 ) )  = 
-u ( 1 ^ ( n  -  1 ) ) )
302191, 226, 300, 301syl3anc 1292 . . . . . . . . 9  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u ( 1 ^ ( n  -  1 ) ) )
303 1exp 12339 . . . . . . . . . . 11  |-  ( ( n  -  1 )  e.  ZZ  ->  (
1 ^ ( n  -  1 ) )  =  1 )
304297, 303syl 17 . . . . . . . . . 10  |-  ( n  e.  ( NN  \  ran  G )  ->  (
1 ^ ( n  -  1 ) )  =  1 )
305304negeqd 9889 . . . . . . . . 9  |-  ( n  e.  ( NN  \  ran  G )  ->  -u (
1 ^ ( n  -  1 ) )  =  -u 1 )
306302, 305eqtrd 2505 . . . . . . . 8  |-  ( n  e.  ( NN  \  ran  G )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u 1 )
307306adantl 473 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u 1 )
308307oveq1d 6323 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1 ^ (
n  -  1 ) )  x.  ( ( T ^ n )  /  n ) )  =  ( -u 1  x.  ( ( T ^
n )  /  n
) ) )
309308oveq1d 6323 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( T ^
n )  /  n
) )  +  ( ( T ^ n
)  /  n ) )  =  ( (
-u 1  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) ) )
310201mulm1d 10091 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u 1  x.  ( ( T ^ n )  /  n ) )  =  -u ( ( T ^ n )  /  n ) )
311310oveq1d 6323 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  =  ( -u (
( T ^ n
)  /  n )  +  ( ( T ^ n )  /  n ) ) )
312201negcld 9992 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  -u (
( T ^ n
)  /  n )  e.  CC )
313312, 201addcomd 9853 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( -u ( ( T ^
n )  /  n
)  +  ( ( T ^ n )  /  n ) )  =  ( ( ( T ^ n )  /  n )  + 
-u ( ( T ^ n )  /  n ) ) )
314201negidd 9995 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( ( T ^
n )  /  n
)  +  -u (
( T ^ n
)  /  n ) )  =  0 )
315311, 313, 3143eqtrd 2509 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  (
( -u 1  x.  (
( T ^ n
)  /  n ) )  +  ( ( T ^ n )  /  n ) )  =  0 )
316205, 309, 3153eqtrd 2509 . . . 4  |-  ( (
ph  /\  n  e.  ( NN  \  ran  G
) )  ->  ( F `  n )  =  0 )
317117, 116eqeltrd 2549 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  CC )
318103a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  F  =  ( j  e.  NN  |->  ( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) ) ) )
319 simpr 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
j  =  ( ( 2  x.  k )  +  1 ) )
320319oveq1d 6323 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( j  -  1 )  =  ( ( ( 2  x.  k
)  +  1 )  -  1 ) )
321320oveq2d 6324 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( -u 1 ^ (
j  -  1 ) )  =  ( -u
1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) ) )
322319oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( T ^ j
)  =  ( T ^ ( ( 2  x.  k )  +  1 ) ) )
323322, 319oveq12d 6326 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( T ^
j )  /  j
)  =  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )
324321, 323oveq12d 6326 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( -u 1 ^ ( j  - 
1 ) )  x.  ( ( T ^
j )  /  j
) )  =  ( ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  -  1 ) )  x.  (
( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
325324, 323oveq12d 6326 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  ( ( 2  x.  k )  +  1 ) )  -> 
( ( ( -u
1 ^ ( j  -  1 ) )  x.  ( ( T ^ j )  / 
j ) )  +  ( ( T ^
j )  /  j
) )  =  ( ( ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  x.  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
326148a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  NN0 )
327 simpr 468 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
328326, 327nn0mulcld 10954 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e. 
NN0 )
329 nn0p1nn 10933 . . . . . . . 8  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
330328, 329syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e.  NN )
331176negcld 9992 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  -u 1  e.  CC )
332175, 176pncand 10006 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  -  1 )  =  ( 2  x.  k
) )
333148a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  2  e. 
NN0 )
334333, 172nn0mulcld 10954 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e. 
NN0 )
335332, 334eqeltrd 2549 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  -  1 )  e. 
NN0 )
336331, 335expcld 12454 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  e.  CC )
337336adantl 473 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  e.  CC )
33814adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  T  e.  CC )
339208a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  e.  NN0 )
340328, 339nn0addcld 10953 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e. 
NN0 )
341338, 340expcld 12454 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( T ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
342 2cnd 10704 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  CC )
343174adantl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  CC )
344342, 343mulcld 9681 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e.  CC )
345 1cnd 9677 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  e.  CC )
346344, 345addcld 9680 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e.  CC )
347 0red 9662 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  RR )
348156a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  RR )
349158adantl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  RR )
350348, 349remulcld 9689 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e.  RR )
351 1red 9676 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  e.  RR )
352 0le2 10722 . . . . . . . . . . . . . 14  |-  0  <_  2
353352a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  2 )
354327nn0ge0d 10952 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  k )
355348, 349, 353, 354mulge0d 10211 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( 2  x.  k ) )
356 0lt1 10157 . . . . . . . . . . . . 13  |-  0  <  1
357356a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <  1 )
358350, 351, 355, 357addgegt0d 10208 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <  ( ( 2  x.  k
)  +  1 ) )
359347, 358gtned 9787 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  =/=  0 )
360341, 346, 359divcld 10405 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  e.  CC )
361337, 360mulcld 9681 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  e.  CC )
362361, 360addcld 9680 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( -u 1 ^ (
( ( 2  x.  k )  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  +  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  e.  CC )
363318, 325, 330, 362fvmptd 5969 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( ( 2  x.  k )  +  1 ) )  =  ( ( ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  x.  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
364332adantl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( 2  x.  k
)  +  1 )  -  1 )  =  ( 2  x.  k
) )
365364oveq2d 6324 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  =  ( -u 1 ^ ( 2  x.  k
) ) )
366 nn0z 10984 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
367 m1expeven 12357 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  k ) )  =  1 )
368366, 367syl 17 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  1 )
369368adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( 2  x.  k ) )  =  1 )
370365, 369eqtrd 2505 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -u 1 ^ ( ( ( 2  x.  k )  +  1 )  - 
1 ) )  =  1 )
371370oveq1d 6323 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( 1  x.  (
( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
372360mulid2d 9679 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )
373371, 372eqtrd 2505 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ ( ( ( 2  x.  k
)  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( T ^
( ( 2  x.  k )  +  1 ) )  /  (
( 2  x.  k
)  +  1 ) ) )
374373oveq1d 6323 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( -u 1 ^ (
( ( 2  x.  k )  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  +  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
3753602timesd 10878 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  +  ( ( T ^ (
( 2  x.  k
)  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) ) )
376341, 346, 359divrec2d 10409 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  k )  +  1 ) ) ) )
377376oveq2d 6324 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
378374, 375, 3773eqtr2d 2511 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( -u 1 ^ (
( ( 2  x.  k )  +  1 )  -  1 ) )  x.  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  +  ( ( T ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
379363, 378eqtr2d 2506 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) )  =  ( F `  (
( 2  x.  k
)  +  1 ) ) )
380 stirlinglem5.4 . . . . . . 7  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
381380a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) ) ) )
382 simpr 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
j  =  k )
383382oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( 2  x.  j
)  =  ( 2  x.  k ) )
384383oveq1d 6323 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( ( 2  x.  j )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
385384oveq2d 6324 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  =  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )
386384oveq2d 6324 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( T ^ (
( 2  x.  j
)  +  1 ) )  =  ( T ^ ( ( 2  x.  k )  +  1 ) ) )
387385, 386oveq12d 6326 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) )
388387oveq2d 6324 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( T ^ ( ( 2  x.  j )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
389346, 359reccld 10398 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
390389, 341mulcld 9681 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^
( ( 2  x.  k )  +  1 ) ) )  e.  CC )
391342, 390mulcld 9681 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^ (
( 2  x.  k
)  +  1 ) ) ) )  e.  CC )
392381, 388, 327, 391fvmptd 5969 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( T ^
( ( 2  x.  k )  +  1 ) ) ) ) )
393208a1i 11 . . . . . . . . 9  |-  ( k  e.  NN0  ->  1  e. 
NN0 )
394334, 393nn0addcld 10953 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
395168, 171, 172, 394fvmptd 5969 . . . . . . 7  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( ( 2  x.  k )  +  1 ) )
396395adantl 473 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( ( 2  x.  k
)  +  1 ) )
397396fveq2d 5883 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( G `  k
) )  =  ( F `  ( ( 2  x.  k )  +  1 ) ) )
398379, 392, 3973eqtr4d 2515 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( F `  ( G `
 k ) ) )
399145, 1, 146, 2, 155, 188, 316, 317, 398isercoll2 13809 . . 3  |-  ( ph  ->  (  seq 0 (  +  ,  H )  ~~>  ( ( log `  (
1  +  T ) )  -  ( log `  ( 1  -  T
) ) )  <->  seq 1
(  +  ,  F
)  ~~>  ( ( log `  ( 1  +  T
) )  -  ( log `  ( 1  -  T ) ) ) ) )
400144, 399mpbird 240 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( log `  ( 1  +  T ) )  -  ( log `  (
1  -  T ) ) ) )
40151, 13resubcld 10068 . . . 4  |-  ( ph  ->  ( 1  -  T
)  e.  RR )
40214subidd 9993 . . . . . 6  |-  ( ph  ->  ( T  -  T
)  =  0 )
403402eqcomd 2477 . . . . 5  |-  ( ph  ->  0  =  ( T  -  T ) )
40413, 51, 13, 139ltsub1dd 10246 . . . . 5  |-  ( ph  ->  ( T  -  T
)  <  ( 1  -  T ) )
405403, 404eqbrtrd 4416 . . . 4  |-  ( ph  ->  0  <  ( 1  -  T ) )
406401, 405elrpd 11361 . . 3  |-  ( ph  ->  ( 1  -  T
)  e.  RR+ )
407133, 406relogdivd 23654 . 2  |-  ( ph  ->  ( log `  (
( 1  +  T
)  /  ( 1  -  T ) ) )  =  ( ( log `  ( 1  +  T ) )  -  ( log `  (
1  -  T ) ) ) )
408400, 407breqtrrd 4422 1  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( log `  ( ( 1  +  T )  /  (
1  -  T ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    \ cdif 3387   class class class wbr 4395    |-> cmpt 4454   ran crn 4840    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810    seqcseq 12251   ^cexp 12310   abscabs 13374    ~~> cli 13625    || cdvds 14382   *Metcxmt 19032   ballcbl 19034   logclog 23583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-tan 14202  df-pi 14203  df-dvds 14383  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-ulm 23411  df-log 23585
This theorem is referenced by:  stirlinglem6  38053
  Copyright terms: Public domain W3C validator