Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem4 Structured version   Visualization version   Unicode version

Theorem stirlinglem4 38051
Description: Algebraic manipulation of  ( ( B n ) - ( B  ( n  +  1 ) ) ). It will be used in other theorems to show that  B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem4.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem4.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem4.3  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
Assertion
Ref Expression
stirlinglem4  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( J `  N ) )
Distinct variable group:    n, N
Allowed substitution hints:    A( n)    B( n)    J( n)

Proof of Theorem stirlinglem4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnre 10638 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
2 nnnn0 10900 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
32nn0ge0d 10952 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <_  N )
41, 3ge0p1rpd 11391 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR+ )
5 nnrp 11334 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR+ )
64, 5rpdivcld 11381 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  RR+ )
76rpsqrtcld 13550 . . . . 5  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  e.  RR+ )
8 nnz 10983 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
96, 8rpexpcld 12477 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  N
) ^ N )  e.  RR+ )
107, 9rpmulcld 11380 . . . 4  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  e.  RR+ )
11 epr 14337 . . . . 5  |-  _e  e.  RR+
1211a1i 11 . . . 4  |-  ( N  e.  NN  ->  _e  e.  RR+ )
1310, 12relogdivd 23654 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )  =  ( ( log `  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )  -  ( log `  _e ) ) )
147, 9relogmuld 23653 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( log `  ( sqr `  ( ( N  +  1 )  /  N ) ) )  +  ( log `  (
( ( N  + 
1 )  /  N
) ^ N ) ) ) )
15 logsqrt 23728 . . . . . . . 8  |-  ( ( ( N  +  1 )  /  N )  e.  RR+  ->  ( log `  ( sqr `  (
( N  +  1 )  /  N ) ) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  /  2 ) )
166, 15syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( sqr `  (
( N  +  1 )  /  N ) ) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  /  2 ) )
17 relogexp 23624 . . . . . . . 8  |-  ( ( ( ( N  + 
1 )  /  N
)  e.  RR+  /\  N  e.  ZZ )  ->  ( log `  ( ( ( N  +  1 )  /  N ) ^ N ) )  =  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
186, 8, 17syl2anc 673 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( ( N  +  1 )  /  N ) ^ N ) )  =  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
1916, 18oveq12d 6326 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  ( sqr `  ( ( N  +  1 )  /  N ) ) )  +  ( log `  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
2014, 19eqtrd 2505 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
21 peano2nn 10643 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2221nncnd 10647 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
23 nncn 10639 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
24 nnne0 10664 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
2522, 23, 24divcld 10405 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
2621nnne0d 10676 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
2722, 23, 26, 24divne0d 10421 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
2825, 27logcld 23599 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
29 2cnd 10704 . . . . . . 7  |-  ( N  e.  NN  ->  2  e.  CC )
30 2rp 11330 . . . . . . . . 9  |-  2  e.  RR+
3130a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  RR+ )
3231rpne0d 11369 . . . . . . 7  |-  ( N  e.  NN  ->  2  =/=  0 )
3328, 29, 32divrec2d 10409 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  /  2 )  =  ( ( 1  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) ) )
3433oveq1d 6323 . . . . 5  |-  ( N  e.  NN  ->  (
( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )  =  ( ( ( 1  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
35 1cnd 9677 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  CC )
3635halfcld 10880 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  2 )  e.  CC )
3736, 23, 28adddird 9686 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  +  N
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) ) )
3823, 29, 32divcan4d 10411 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  x.  2 )  /  2 )  =  N )
3923, 29mulcomd 9682 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  x.  2 )  =  ( 2  x.  N ) )
4039oveq1d 6323 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  x.  2 )  /  2 )  =  ( ( 2  x.  N )  / 
2 ) )
4138, 40eqtr3d 2507 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =  ( ( 2  x.  N )  / 
2 ) )
4241oveq2d 6324 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  2
)  +  N )  =  ( ( 1  /  2 )  +  ( ( 2  x.  N )  /  2
) ) )
4329, 23mulcld 9681 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
4435, 43, 29, 32divdird 10443 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( 1  /  2 )  +  ( ( 2  x.  N )  /  2
) ) )
4542, 44eqtr4d 2508 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  2
)  +  N )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
4645oveq1d 6323 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  +  N
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
4737, 46eqtr3d 2507 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
4820, 34, 473eqtrd 2509 . . . 4  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
49 loge 23615 . . . . 5  |-  ( log `  _e )  =  1
5049a1i 11 . . . 4  |-  ( N  e.  NN  ->  ( log `  _e )  =  1 )
5148, 50oveq12d 6326 . . 3  |-  ( N  e.  NN  ->  (
( log `  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )  -  ( log `  _e ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
5213, 51eqtrd 2505 . 2  |-  ( N  e.  NN  ->  ( log `  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
53 stirlinglem4.1 . . . . . . 7  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
5453stirlinglem2 38049 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )
5554relogcld 23651 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( A `  N ) )  e.  RR )
56 nfcv 2612 . . . . . 6  |-  F/_ n N
57 nfcv 2612 . . . . . . 7  |-  F/_ n log
58 nfmpt1 4485 . . . . . . . . 9  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
5953, 58nfcxfr 2610 . . . . . . . 8  |-  F/_ n A
6059, 56nffv 5886 . . . . . . 7  |-  F/_ n
( A `  N
)
6157, 60nffv 5886 . . . . . 6  |-  F/_ n
( log `  ( A `  N )
)
62 fveq2 5879 . . . . . . 7  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
6362fveq2d 5883 . . . . . 6  |-  ( n  =  N  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  N )
) )
64 stirlinglem4.2 . . . . . 6  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
6556, 61, 63, 64fvmptf 5981 . . . . 5  |-  ( ( N  e.  NN  /\  ( log `  ( A `
 N ) )  e.  RR )  -> 
( B `  N
)  =  ( log `  ( A `  N
) ) )
6655, 65mpdan 681 . . . 4  |-  ( N  e.  NN  ->  ( B `  N )  =  ( log `  ( A `  N )
) )
67 nfcv 2612 . . . . . . . 8  |-  F/_ k
( log `  ( A `  n )
)
68 nfcv 2612 . . . . . . . . . 10  |-  F/_ n
k
6959, 68nffv 5886 . . . . . . . . 9  |-  F/_ n
( A `  k
)
7057, 69nffv 5886 . . . . . . . 8  |-  F/_ n
( log `  ( A `  k )
)
71 fveq2 5879 . . . . . . . . 9  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
7271fveq2d 5883 . . . . . . . 8  |-  ( n  =  k  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  k )
) )
7367, 70, 72cbvmpt 4487 . . . . . . 7  |-  ( n  e.  NN  |->  ( log `  ( A `  n
) ) )  =  ( k  e.  NN  |->  ( log `  ( A `
 k ) ) )
7464, 73eqtri 2493 . . . . . 6  |-  B  =  ( k  e.  NN  |->  ( log `  ( A `
 k ) ) )
7574a1i 11 . . . . 5  |-  ( N  e.  NN  ->  B  =  ( k  e.  NN  |->  ( log `  ( A `  k )
) ) )
76 simpr 468 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  k  =  ( N  +  1 ) )
7776fveq2d 5883 . . . . . 6  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( A `  k )  =  ( A `  ( N  +  1 ) ) )
7877fveq2d 5883 . . . . 5  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( log `  ( A `  k )
)  =  ( log `  ( A `  ( N  +  1 ) ) ) )
7953stirlinglem2 38049 . . . . . . 7  |-  ( ( N  +  1 )  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
8021, 79syl 17 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
8180relogcld 23651 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( A `  ( N  +  1
) ) )  e.  RR )
8275, 78, 21, 81fvmptd 5969 . . . 4  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8366, 82oveq12d 6326 . . 3  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( ( log `  ( A `  N
) )  -  ( log `  ( A `  ( N  +  1
) ) ) ) )
8454, 80relogdivd 23654 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( A `
 N )  / 
( A `  ( N  +  1 ) ) ) )  =  ( ( log `  ( A `  N )
)  -  ( log `  ( A `  ( N  +  1 ) ) ) ) )
85 faccl 12507 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
86 nnrp 11334 . . . . . . . . 9  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  RR+ )
872, 85, 863syl 18 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR+ )
8831, 5rpmulcld 11380 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
8988rpsqrtcld 13550 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  RR+ )
905, 12rpdivcld 11381 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  /  _e )  e.  RR+ )
9190, 8rpexpcld 12477 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  RR+ )
9289, 91rpmulcld 11380 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  RR+ )
9387, 92rpdivcld 11381 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )
9453a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) ) )
95 simpr 468 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  n  =  N )
9695fveq2d 5883 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ! `  n )  =  ( ! `  N ) )
9795oveq2d 6324 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( 2  x.  n )  =  ( 2  x.  N
) )
9897fveq2d 5883 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( sqr `  ( 2  x.  n
) )  =  ( sqr `  ( 2  x.  N ) ) )
9995oveq1d 6323 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( n  /  _e )  =  ( N  /  _e ) )
10099, 95oveq12d 6326 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( (
n  /  _e ) ^ n )  =  ( ( N  /  _e ) ^ N ) )
10198, 100oveq12d 6326 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )
10296, 101oveq12d 6326 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) )  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
103 simpl 464 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN )
10487rpcnd 11366 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
105104adantr 472 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ! `  N
)  e.  CC )
106 2cnd 10704 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  2  e.  CC )
107103nncnd 10647 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  CC )
108106, 107mulcld 9681 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( 2  x.  N
)  e.  CC )
109108sqrtcld 13576 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( sqr `  (
2  x.  N ) )  e.  CC )
110 ere 14220 . . . . . . . . . . . . . 14  |-  _e  e.  RR
111110recni 9673 . . . . . . . . . . . . 13  |-  _e  e.  CC
112111a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  _e  e.  CC )
113 0re 9661 . . . . . . . . . . . . . 14  |-  0  e.  RR
114 epos 14336 . . . . . . . . . . . . . 14  |-  0  <  _e
115113, 114gtneii 9764 . . . . . . . . . . . . 13  |-  _e  =/=  0
116115a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  _e  =/=  0 )
117107, 112, 116divcld 10405 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( N  /  _e )  e.  CC )
118103nnnn0d 10949 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN0 )
119117, 118expcld 12454 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( N  /  _e ) ^ N )  e.  CC )
120109, 119mulcld 9681 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  CC )
12189rpne0d 11369 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  =/=  0 )
122121adantr 472 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( sqr `  (
2  x.  N ) )  =/=  0 )
123103nnne0d 10676 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  =/=  0 )
124107, 112, 123, 116divne0d 10421 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( N  /  _e )  =/=  0 )
125103nnzd 11062 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  ZZ )
126117, 124, 125expne0d 12460 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( N  /  _e ) ^ N )  =/=  0 )
127109, 119, 122, 126mulne0d 10286 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  =/=  0 )
128105, 120, 127divcld 10405 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  CC )
12994, 102, 103, 128fvmptd 5969 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( A `  N
)  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
13093, 129mpdan 681 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  N )  =  ( ( ! `
 N )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
131 nfcv 2612 . . . . . . . . . 10  |-  F/_ k
( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) )
132 nfcv 2612 . . . . . . . . . 10  |-  F/_ n
( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) )
133 fveq2 5879 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
134 oveq2 6316 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
135134fveq2d 5883 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  k ) ) )
136 oveq1 6315 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  /  _e )  =  ( k  /  _e ) )
137 id 22 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  n  =  k )
138136, 137oveq12d 6326 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( n  /  _e ) ^ n )  =  ( ( k  /  _e ) ^ k ) )
139135, 138oveq12d 6326 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) )
140133, 139oveq12d 6326 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  =  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
141131, 132, 140cbvmpt 4487 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) )  =  ( k  e.  NN  |->  ( ( ! `  k
)  /  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^
k ) ) ) )
14253, 141eqtri 2493 . . . . . . . 8  |-  A  =  ( k  e.  NN  |->  ( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
143142a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  A  =  ( k  e.  NN  |->  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) ) )
14476fveq2d 5883 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ! `  k )  =  ( ! `  ( N  +  1 ) ) )
14576oveq2d 6324 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( 2  x.  k )  =  ( 2  x.  ( N  +  1 ) ) )
146145fveq2d 5883 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( sqr `  (
2  x.  k ) )  =  ( sqr `  ( 2  x.  ( N  +  1 ) ) ) )
14776oveq1d 6323 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( k  /  _e )  =  (
( N  +  1 )  /  _e ) )
148147, 76oveq12d 6326 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( k  /  _e ) ^
k )  =  ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )
149146, 148oveq12d 6326 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) )  =  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
150144, 149oveq12d 6326 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) )  =  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
15121nnnn0d 10949 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
152 faccl 12507 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
153 nnrp 11334 . . . . . . . . 9  |-  ( ( ! `  ( N  +  1 ) )  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  RR+ )
154151, 152, 1533syl 18 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  RR+ )
15531, 4rpmulcld 11380 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  e.  RR+ )
156155rpsqrtcld 13550 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  e.  RR+ )
1574, 12rpdivcld 11381 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  _e )  e.  RR+ )
1588peano2zd 11066 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
159157, 158rpexpcld 12477 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  e.  RR+ )
160156, 159rpmulcld 11380 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  RR+ )
161154, 160rpdivcld 11381 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  e.  RR+ )
162143, 150, 21, 161fvmptd 5969 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  =  ( ( ! `
 ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
163130, 162oveq12d 6326 . . . . 5  |-  ( N  e.  NN  ->  (
( A `  N
)  /  ( A `
 ( N  + 
1 ) ) )  =  ( ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
164 facp1 12502 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1652, 164syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
166165oveq1d 6323 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
167160rpcnd 11366 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  CC )
168160rpne0d 11369 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  =/=  0 )
169104, 22, 167, 168divassd 10440 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  /  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
170166, 169eqtrd 2505 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  /  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
171170oveq2d 6324 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) ) )
17292rpcnd 11366 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  CC )
17322, 167, 168divcld 10405 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  e.  CC )
174104, 173mulcld 9681 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  e.  CC )
17592rpne0d 11369 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  =/=  0 )
17687rpne0d 11369 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
17722, 167, 26, 168divne0d 10421 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =/=  0 )
178104, 173, 176, 177mulne0d 10286 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =/=  0
)
179104, 172, 174, 175, 178divdiv32d 10430 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  =  ( ( ( ! `
 N )  / 
( ( ! `  N )  x.  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
180104, 104, 173, 176, 177divdiv1d 10436 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ! `  N
)  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) ) )
181180eqcomd 2477 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  =  ( ( ( ! `
 N )  / 
( ! `  N
) )  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) ) )
182181oveq1d 6323 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
183104, 176dividd 10403 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ! `
 N ) )  =  1 )
184183oveq1d 6323 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( 1  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
185184oveq1d 6323 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  / 
( ! `  N
) )  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( 1  /  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
18622, 167, 26, 168recdivd 10422 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
187186oveq1d 6323 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
188167, 22, 26divcld 10405 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  e.  CC )
18989rpcnd 11366 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  CC )
19091rpcnd 11366 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  CC )
19191rpne0d 11369 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  =/=  0 )
192188, 189, 190, 121, 191divdiv1d 10436 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  ( sqr `  ( 2  x.  N ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
193167, 22, 189, 26, 121divdiv32d 10430 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( sqr `  (
2  x.  N ) ) )  =  ( ( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  /  ( N  +  1 ) ) )
194156rpcnd 11366 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  e.  CC )
195159rpcnd 11366 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  e.  CC )
196194, 195, 189, 121div23d 10442 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  =  ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) ) )
19731rpred 11364 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
19831rpge0d 11368 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  2 )
19921nnred 10646 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
200151nn0ge0d 10952 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  ( N  +  1 ) )
201197, 198, 199, 200sqrtmuld 13563 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  =  ( ( sqr `  2
)  x.  ( sqr `  ( N  +  1 ) ) ) )
202197, 198, 1, 3sqrtmuld 13563 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  =  ( ( sqr `  2
)  x.  ( sqr `  N ) ) )
203201, 202oveq12d 6326 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  =  ( ( ( sqr `  2 )  x.  ( sqr `  ( N  +  1 ) ) )  /  (
( sqr `  2
)  x.  ( sqr `  N ) ) ) )
20429sqrtcld 13576 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  2 )  e.  CC )
20522sqrtcld 13576 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( N  + 
1 ) )  e.  CC )
20623sqrtcld 13576 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  N )  e.  CC )
20731rpsqrtcld 13550 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  2 )  e.  RR+ )
208207rpne0d 11369 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  2 )  =/=  0 )
2095rpsqrtcld 13550 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  N )  e.  RR+ )
210209rpne0d 11369 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  N )  =/=  0 )
211204, 204, 205, 206, 208, 210divmuldivd 10446 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( ( sqr `  2
)  /  ( sqr `  2 ) )  x.  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )  =  ( ( ( sqr `  2
)  x.  ( sqr `  ( N  +  1 ) ) )  / 
( ( sqr `  2
)  x.  ( sqr `  N ) ) ) )
212204, 208dividd 10403 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( sqr `  2
)  /  ( sqr `  2 ) )  =  1 )
213199, 200, 5sqrtdivd 13562 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  =  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )
214213eqcomd 2477 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) )  =  ( sqr `  (
( N  +  1 )  /  N ) ) )
215212, 214oveq12d 6326 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( ( sqr `  2
)  /  ( sqr `  2 ) )  x.  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )  =  ( 1  x.  ( sqr `  (
( N  +  1 )  /  N ) ) ) )
216203, 211, 2153eqtr2d 2511 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  =  ( 1  x.  ( sqr `  ( ( N  +  1 )  /  N ) ) ) )
217216oveq1d 6323 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) )  =  ( ( 1  x.  ( sqr `  ( ( N  + 
1 )  /  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) ) )
21825sqrtcld 13576 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  e.  CC )
219218mulid2d 9679 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
1  x.  ( sqr `  ( ( N  + 
1 )  /  N
) ) )  =  ( sqr `  (
( N  +  1 )  /  N ) ) )
220219oveq1d 6323 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 1  x.  ( sqr `  ( ( N  +  1 )  /  N ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
221196, 217, 2203eqtrd 2509 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
222221oveq1d 6323 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  /  ( N  +  1 ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
223193, 222eqtrd 2505 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( sqr `  (
2  x.  N ) ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
224223oveq1d 6323 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  ( sqr `  ( 2  x.  N ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  (
( N  /  _e ) ^ N ) ) )
225192, 224eqtr3d 2507 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) )
226218, 195mulcld 9681 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  CC )
227226, 22, 190, 26, 191divdiv32d 10430 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  / 
( N  +  1 ) ) )
228218, 195, 190, 191divassd 10440 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) ) )
22912rpcnd 11366 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  _e  e.  CC )
23012rpne0d 11369 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  _e  =/=  0 )
23122, 229, 230, 151expdivd 12468 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  =  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) ) )
23223, 229, 230, 2expdivd 12468 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  =  ( ( N ^ N )  /  (
_e ^ N ) ) )
233231, 232oveq12d 6326 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( _e ^ ( N  +  1 ) ) )  /  (
( N ^ N
)  /  ( _e
^ N ) ) ) )
234233oveq2d 6324 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( _e
^ ( N  + 
1 ) ) )  /  ( ( N ^ N )  / 
( _e ^ N
) ) ) ) )
23522, 151expcld 12454 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ ( N  +  1 ) )  e.  CC )
236229, 151expcld 12454 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  e.  CC )
23723, 2expcld 12454 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ N )  e.  CC )
238229, 2expcld 12454 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ N )  e.  CC )
239229, 230, 158expne0d 12460 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  =/=  0 )
240229, 230, 8expne0d 12460 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ N )  =/=  0 )
24123, 24, 8expne0d 12460 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ N )  =/=  0 )
242235, 236, 237, 238, 239, 240, 241divdivdivd 10452 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) )  /  ( ( N ^ N )  /  ( _e ^ N ) ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  x.  ( _e ^ N ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
243235, 238mulcomd 9682 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  x.  ( _e
^ N ) )  =  ( ( _e
^ N )  x.  ( ( N  + 
1 ) ^ ( N  +  1 ) ) ) )
244243oveq1d 6323 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  x.  (
_e ^ N ) )  /  ( ( _e ^ ( N  +  1 ) )  x.  ( N ^ N ) ) )  =  ( ( ( _e ^ N )  x.  ( ( N  +  1 ) ^
( N  +  1 ) ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
245238, 236, 235, 237, 239, 241divmuldivd 10446 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ ( N  +  1 ) ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( ( _e ^ N )  x.  ( ( N  +  1 ) ^
( N  +  1 ) ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
246229, 2expp1d 12455 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  =  ( ( _e
^ N )  x.  _e ) )
247246oveq2d 6324 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ ( N  + 
1 ) ) )  =  ( ( _e
^ N )  / 
( ( _e ^ N )  x.  _e ) ) )
248238, 238, 229, 240, 230divdiv1d 10436 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ N ) )  /  _e )  =  ( ( _e
^ N )  / 
( ( _e ^ N )  x.  _e ) ) )
249238, 240dividd 10403 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ N ) )  =  1 )
250249oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ N ) )  /  _e )  =  ( 1  /  _e ) )
251247, 248, 2503eqtr2d 2511 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ ( N  + 
1 ) ) )  =  ( 1  /  _e ) )
252251oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ ( N  +  1 ) ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
253245, 252eqtr3d 2507 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  x.  (
( N  +  1 ) ^ ( N  +  1 ) ) )  /  ( ( _e ^ ( N  +  1 ) )  x.  ( N ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
254242, 244, 2533eqtrd 2509 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) )  /  ( ( N ^ N )  /  ( _e ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
255254oveq2d 6324 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( _e
^ ( N  + 
1 ) ) )  /  ( ( N ^ N )  / 
( _e ^ N
) ) ) )  =  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) ) ) )
256228, 234, 2553eqtrd 2509 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) ) )
257256oveq1d 6323 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  / 
( N  +  1 ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) ) )
258235, 237, 241divcld 10405 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  e.  CC )
25935, 229, 258, 230div32d 10428 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( 1  x.  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) )  /  _e ) ) )
260258, 229, 230divcld 10405 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  _e )  e.  CC )
261260mulid2d 9679 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )
262259, 261eqtrd 2505 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )
263262oveq2d 6324 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) ) )
264229, 230reccld 10398 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  _e )  e.  CC )
265264, 258mulcld 9681 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  e.  CC )
266218, 265, 22, 26div23d 10442 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) ) )
267218, 22, 26divcld 10405 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  e.  CC )
268267, 258, 229, 230divassd 10440 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) ) )
269263, 266, 2683eqtr4d 2515 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) )  =  ( ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  /  ( N  + 
1 ) )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e ) )
270227, 257, 2693eqtrd 2509 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
271187, 225, 2703eqtrd 2509 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
272182, 185, 2713eqtrd 2509 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
273171, 179, 2723eqtrd 2509 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e ) )
274218, 22, 258, 26div32d 10428 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) ) ) )
27522, 2expp1d 12455 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ ( N  +  1 ) )  =  ( ( ( N  +  1 ) ^ N )  x.  ( N  +  1 ) ) )
276275oveq1d 6323 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( ( ( N  +  1 ) ^ N )  x.  ( N  + 
1 ) )  / 
( N  +  1 ) ) )
27722, 2expcld 12454 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ N )  e.  CC )
278277, 22, 26divcan4d 10411 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^ N )  x.  ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( N  +  1 ) ^ N ) )
279276, 278eqtrd 2505 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( N  +  1 ) ^ N ) )
280279oveq1d 6323 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N  +  1 ) )  /  ( N ^ N ) )  =  ( ( ( N  +  1 ) ^ N )  / 
( N ^ N
) ) )
281235, 237, 22, 241, 26divdiv32d 10430 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) )  =  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N  +  1 ) )  /  ( N ^ N ) ) )
28222, 23, 24, 2expdivd 12468 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  N
) ^ N )  =  ( ( ( N  +  1 ) ^ N )  / 
( N ^ N
) ) )
283280, 281, 2823eqtr4d 2515 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) )  =  ( ( ( N  +  1 )  /  N ) ^ N
) )
284283oveq2d 6324 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) ) )  =  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )
285274, 284eqtrd 2505 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )
286285oveq1d 6323 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) )  /  _e ) )
287163, 273, 2863eqtrd 2509 . . . 4  |-  ( N  e.  NN  ->  (
( A `  N
)  /  ( A `
 ( N  + 
1 ) ) )  =  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )
288287fveq2d 5883 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( A `
 N )  / 
( A `  ( N  +  1 ) ) ) )  =  ( log `  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) ) )
28983, 84, 2883eqtr2d 2511 . 2  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( log `  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) ) )
29035, 43addcld 9680 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
291290halfcld 10880 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
292291, 28mulcld 9681 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
293292, 35subcld 10005 . . 3  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
294 stirlinglem4.3 . . . . 5  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
295294a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 ) ) )
296 simpr 468 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  n  =  N )
297296oveq2d 6324 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( 2  x.  n )  =  ( 2  x.  N
) )
298297oveq2d 6324 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( 1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N ) ) )
299298oveq1d 6323 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N
) )  /  2
) )
300296oveq1d 6323 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( n  +  1 )  =  ( N  +  1 ) )
301300, 296oveq12d 6326 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
n  +  1 )  /  n )  =  ( ( N  + 
1 )  /  N
) )
302301fveq2d 5883 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( log `  ( ( n  + 
1 )  /  n
) )  =  ( log `  ( ( N  +  1 )  /  N ) ) )
303299, 302oveq12d 6326 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
304303oveq1d 6323 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
305 simpl 464 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  N  e.  NN )
306 simpr 468 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
307295, 304, 305, 306fvmptd 5969 . . 3  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
308293, 307mpdan 681 . 2  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
30952, 289, 3083eqtr4d 2515 1  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( J `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   RR+crp 11325   ^cexp 12310   !cfa 12497   sqrcsqrt 13373   _eceu 14192   logclog 23583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-cxp 23586
This theorem is referenced by:  stirlinglem9  38056
  Copyright terms: Public domain W3C validator