Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem12 Structured version   Unicode version

Theorem stirlinglem12 31413
Description: The sequence  B is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem12.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem12.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem12.3  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
Assertion
Ref Expression
stirlinglem12  |-  ( N  e.  NN  ->  (
( B `  1
)  -  ( 1  /  4 ) )  <_  ( B `  N ) )
Distinct variable group:    n, N
Allowed substitution hints:    A( n)    B( n)    F( n)

Proof of Theorem stirlinglem12
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 10547 . . . . 5  |-  1  e.  NN
2 stirlinglem12.1 . . . . . . 7  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
32stirlinglem2 31403 . . . . . 6  |-  ( 1  e.  NN  ->  ( A `  1 )  e.  RR+ )
4 relogcl 22719 . . . . . 6  |-  ( ( A `  1 )  e.  RR+  ->  ( log `  ( A `  1
) )  e.  RR )
51, 3, 4mp2b 10 . . . . 5  |-  ( log `  ( A `  1
) )  e.  RR
6 nfcv 2629 . . . . . 6  |-  F/_ n
1
7 nfcv 2629 . . . . . . 7  |-  F/_ n log
8 nfmpt1 4536 . . . . . . . . 9  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
92, 8nfcxfr 2627 . . . . . . . 8  |-  F/_ n A
109, 6nffv 5873 . . . . . . 7  |-  F/_ n
( A `  1
)
117, 10nffv 5873 . . . . . 6  |-  F/_ n
( log `  ( A `  1 )
)
12 fveq2 5866 . . . . . . 7  |-  ( n  =  1  ->  ( A `  n )  =  ( A ` 
1 ) )
1312fveq2d 5870 . . . . . 6  |-  ( n  =  1  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  1 )
) )
14 stirlinglem12.2 . . . . . 6  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
156, 11, 13, 14fvmptf 5966 . . . . 5  |-  ( ( 1  e.  NN  /\  ( log `  ( A `
 1 ) )  e.  RR )  -> 
( B `  1
)  =  ( log `  ( A `  1
) ) )
161, 5, 15mp2an 672 . . . 4  |-  ( B `
 1 )  =  ( log `  ( A `  1 )
)
1716, 5eqeltri 2551 . . 3  |-  ( B `
 1 )  e.  RR
1817a1i 11 . 2  |-  ( N  e.  NN  ->  ( B `  1 )  e.  RR )
192stirlinglem2 31403 . . . . 5  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )
2019relogcld 22764 . . . 4  |-  ( N  e.  NN  ->  ( log `  ( A `  N ) )  e.  RR )
21 nfcv 2629 . . . . 5  |-  F/_ n N
229, 21nffv 5873 . . . . . 6  |-  F/_ n
( A `  N
)
237, 22nffv 5873 . . . . 5  |-  F/_ n
( log `  ( A `  N )
)
24 fveq2 5866 . . . . . 6  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
2524fveq2d 5870 . . . . 5  |-  ( n  =  N  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  N )
) )
2621, 23, 25, 14fvmptf 5966 . . . 4  |-  ( ( N  e.  NN  /\  ( log `  ( A `
 N ) )  e.  RR )  -> 
( B `  N
)  =  ( log `  ( A `  N
) ) )
2720, 26mpdan 668 . . 3  |-  ( N  e.  NN  ->  ( B `  N )  =  ( log `  ( A `  N )
) )
2827, 20eqeltrd 2555 . 2  |-  ( N  e.  NN  ->  ( B `  N )  e.  RR )
29 4re 10612 . . . 4  |-  4  e.  RR
30 4ne0 10632 . . . 4  |-  4  =/=  0
3129, 30rereccli 10309 . . 3  |-  ( 1  /  4 )  e.  RR
3231a1i 11 . 2  |-  ( N  e.  NN  ->  (
1  /  4 )  e.  RR )
33 fveq2 5866 . . . . 5  |-  ( k  =  j  ->  ( B `  k )  =  ( B `  j ) )
34 fveq2 5866 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  ( B `  k )  =  ( B `  ( j  +  1 ) ) )
35 fveq2 5866 . . . . 5  |-  ( k  =  1  ->  ( B `  k )  =  ( B ` 
1 ) )
36 fveq2 5866 . . . . 5  |-  ( k  =  N  ->  ( B `  k )  =  ( B `  N ) )
37 elnnuz 11118 . . . . . 6  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
3837biimpi 194 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
39 elfznn 11714 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
402stirlinglem2 31403 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( A `  k )  e.  RR+ )
4139, 40syl 16 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  ( A `  k )  e.  RR+ )
4241relogcld 22764 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  ( log `  ( A `  k ) )  e.  RR )
43 nfcv 2629 . . . . . . . . 9  |-  F/_ n
k
449, 43nffv 5873 . . . . . . . . . 10  |-  F/_ n
( A `  k
)
457, 44nffv 5873 . . . . . . . . 9  |-  F/_ n
( log `  ( A `  k )
)
46 fveq2 5866 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
4746fveq2d 5870 . . . . . . . . 9  |-  ( n  =  k  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  k )
) )
4843, 45, 47, 14fvmptf 5966 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( log `  ( A `
 k ) )  e.  RR )  -> 
( B `  k
)  =  ( log `  ( A `  k
) ) )
4939, 42, 48syl2anc 661 . . . . . . 7  |-  ( k  e.  ( 1 ... N )  ->  ( B `  k )  =  ( log `  ( A `  k )
) )
5049adantl 466 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  ( B `  k )  =  ( log `  ( A `
 k ) ) )
5141rpcnd 11258 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  ( A `  k )  e.  CC )
5251adantl 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  ( A `  k )  e.  CC )
5340rpne0d 11261 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( A `  k )  =/=  0 )
5439, 53syl 16 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  ( A `  k )  =/=  0 )
5554adantl 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  ( A `  k )  =/=  0
)
5652, 55logcld 22714 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  ( log `  ( A `  k )
)  e.  CC )
5750, 56eqeltrd 2555 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  ( B `  k )  e.  CC )
5833, 34, 35, 36, 38, 57telfsumo 13579 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1..^ N ) ( ( B `  j )  -  ( B `  ( j  +  1 ) ) )  =  ( ( B `  1 )  -  ( B `  N ) ) )
59 nnz 10886 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
60 fzoval 11798 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
6159, 60syl 16 . . . . 5  |-  ( N  e.  NN  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
6261sumeq1d 13486 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1..^ N ) ( ( B `  j )  -  ( B `  ( j  +  1 ) ) )  =  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( B `
 j )  -  ( B `  ( j  +  1 ) ) ) )
6358, 62eqtr3d 2510 . . 3  |-  ( N  e.  NN  ->  (
( B `  1
)  -  ( B `
 N ) )  =  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( B `  j )  -  ( B `  ( j  +  1 ) ) ) )
64 fzfid 12051 . . . . 5  |-  ( N  e.  NN  ->  (
1 ... ( N  - 
1 ) )  e. 
Fin )
65 elfznn 11714 . . . . . . . 8  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  j  e.  NN )
6665adantl 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  j  e.  NN )
672stirlinglem2 31403 . . . . . . . . . 10  |-  ( j  e.  NN  ->  ( A `  j )  e.  RR+ )
6867relogcld 22764 . . . . . . . . 9  |-  ( j  e.  NN  ->  ( log `  ( A `  j ) )  e.  RR )
69 nfcv 2629 . . . . . . . . . 10  |-  F/_ n
j
709, 69nffv 5873 . . . . . . . . . . 11  |-  F/_ n
( A `  j
)
717, 70nffv 5873 . . . . . . . . . 10  |-  F/_ n
( log `  ( A `  j )
)
72 fveq2 5866 . . . . . . . . . . 11  |-  ( n  =  j  ->  ( A `  n )  =  ( A `  j ) )
7372fveq2d 5870 . . . . . . . . . 10  |-  ( n  =  j  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  j )
) )
7469, 71, 73, 14fvmptf 5966 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  ( log `  ( A `
 j ) )  e.  RR )  -> 
( B `  j
)  =  ( log `  ( A `  j
) ) )
7568, 74mpdan 668 . . . . . . . 8  |-  ( j  e.  NN  ->  ( B `  j )  =  ( log `  ( A `  j )
) )
7675, 68eqeltrd 2555 . . . . . . 7  |-  ( j  e.  NN  ->  ( B `  j )  e.  RR )
7766, 76syl 16 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( B `  j )  e.  RR )
78 peano2nn 10548 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  NN )
792stirlinglem2 31403 . . . . . . . . . . . 12  |-  ( ( j  +  1 )  e.  NN  ->  ( A `  ( j  +  1 ) )  e.  RR+ )
8078, 79syl 16 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  ( A `  ( j  +  1 ) )  e.  RR+ )
8180relogcld 22764 . . . . . . . . . 10  |-  ( j  e.  NN  ->  ( log `  ( A `  ( j  +  1 ) ) )  e.  RR )
82 nfcv 2629 . . . . . . . . . . 11  |-  F/_ n
( j  +  1 )
839, 82nffv 5873 . . . . . . . . . . . 12  |-  F/_ n
( A `  (
j  +  1 ) )
847, 83nffv 5873 . . . . . . . . . . 11  |-  F/_ n
( log `  ( A `  ( j  +  1 ) ) )
85 fveq2 5866 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  ( A `  n )  =  ( A `  ( j  +  1 ) ) )
8685fveq2d 5870 . . . . . . . . . . 11  |-  ( n  =  ( j  +  1 )  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  ( j  +  1 ) ) ) )
8782, 84, 86, 14fvmptf 5966 . . . . . . . . . 10  |-  ( ( ( j  +  1 )  e.  NN  /\  ( log `  ( A `
 ( j  +  1 ) ) )  e.  RR )  -> 
( B `  (
j  +  1 ) )  =  ( log `  ( A `  (
j  +  1 ) ) ) )
8878, 81, 87syl2anc 661 . . . . . . . . 9  |-  ( j  e.  NN  ->  ( B `  ( j  +  1 ) )  =  ( log `  ( A `  ( j  +  1 ) ) ) )
8988, 81eqeltrd 2555 . . . . . . . 8  |-  ( j  e.  NN  ->  ( B `  ( j  +  1 ) )  e.  RR )
9065, 89syl 16 . . . . . . 7  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
9190adantl 466 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
9277, 91resubcld 9987 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( B `
 j )  -  ( B `  ( j  +  1 ) ) )  e.  RR )
9364, 92fsumrecl 13519 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( B `
 j )  -  ( B `  ( j  +  1 ) ) )  e.  RR )
9431a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  / 
4 )  e.  RR )
9565nnred 10551 . . . . . . . . 9  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  j  e.  RR )
96 1re 9595 . . . . . . . . . . 11  |-  1  e.  RR
9796a1i 11 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  1  e.  RR )
9895, 97readdcld 9623 . . . . . . . . 9  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  RR )
9995, 98remulcld 9624 . . . . . . . 8  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  (
j  x.  ( j  +  1 ) )  e.  RR )
10095recnd 9622 . . . . . . . . 9  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  j  e.  CC )
101 ax-1cn 9550 . . . . . . . . . . 11  |-  1  e.  CC
102101a1i 11 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  1  e.  CC )
103100, 102addcld 9615 . . . . . . . . 9  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  CC )
10465nnne0d 10580 . . . . . . . . 9  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  j  =/=  0 )
10578nnne0d 10580 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
j  +  1 )  =/=  0 )
10665, 105syl 16 . . . . . . . . 9  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  (
j  +  1 )  =/=  0 )
107100, 103, 104, 106mulne0d 10201 . . . . . . . 8  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  (
j  x.  ( j  +  1 ) )  =/=  0 )
10899, 107rereccld 10371 . . . . . . 7  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  e.  RR )
109108adantl 466 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  / 
( j  x.  (
j  +  1 ) ) )  e.  RR )
11094, 109remulcld 9624 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( 1  /  4 )  x.  ( 1  /  (
j  x.  ( j  +  1 ) ) ) )  e.  RR )
11164, 110fsumrecl 13519 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( 1  /  4 )  x.  ( 1  /  (
j  x.  ( j  +  1 ) ) ) )  e.  RR )
112 eqid 2467 . . . . . . 7  |-  ( i  e.  NN  |->  ( ( 1  /  ( ( 2  x.  i )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  j )  +  1 ) ) ^
( 2  x.  i
) ) ) )  =  ( i  e.  NN  |->  ( ( 1  /  ( ( 2  x.  i )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  j )  +  1 ) ) ^ (
2  x.  i ) ) ) )
113 eqid 2467 . . . . . . 7  |-  ( i  e.  NN  |->  ( ( 1  /  ( ( ( 2  x.  j
)  +  1 ) ^ 2 ) ) ^ i ) )  =  ( i  e.  NN  |->  ( ( 1  /  ( ( ( 2  x.  j )  +  1 ) ^
2 ) ) ^
i ) )
1142, 14, 112, 113stirlinglem10 31411 . . . . . 6  |-  ( j  e.  NN  ->  (
( B `  j
)  -  ( B `
 ( j  +  1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  (
j  x.  ( j  +  1 ) ) ) ) )
11566, 114syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( B `
 j )  -  ( B `  ( j  +  1 ) ) )  <_  ( (
1  /  4 )  x.  ( 1  / 
( j  x.  (
j  +  1 ) ) ) ) )
11664, 92, 110, 115fsumle 13576 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( B `
 j )  -  ( B `  ( j  +  1 ) ) )  <_  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( 1  /  4 )  x.  ( 1  /  (
j  x.  ( j  +  1 ) ) ) ) )
11764, 109fsumrecl 13519 . . . . . 6  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) )  e.  RR )
11896a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  RR )
119 4pos 10631 . . . . . . . . 9  |-  0  <  4
12029, 119elrpii 11223 . . . . . . . 8  |-  4  e.  RR+
121120a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  4  e.  RR+ )
122 0re 9596 . . . . . . . . 9  |-  0  e.  RR
123122a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  e.  RR )
124 0lt1 10075 . . . . . . . . 9  |-  0  <  1
125124a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  1 )
126123, 118, 125ltled 9732 . . . . . . 7  |-  ( N  e.  NN  ->  0  <_  1 )
127118, 121, 126divge0d 11292 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( 1  /  4
) )
128 eqid 2467 . . . . . . . . . 10  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
129 nnuz 11117 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
130129uztrn2 11099 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  e.  NN )
131 stirlinglem12.3 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
132131a1i 11 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  F  =  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )
133 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  n  =  j )  ->  n  =  j )
134133oveq1d 6299 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( n  +  1 )  =  ( j  +  1 ) )
135133, 134oveq12d 6302 . . . . . . . . . . . . 13  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( n  x.  (
n  +  1 ) )  =  ( j  x.  ( j  +  1 ) ) )
136135oveq2d 6300 . . . . . . . . . . . 12  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( 1  /  (
n  x.  ( n  +  1 ) ) )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
137 id 22 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  j  e.  NN )
138 nnre 10543 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  RR )
13996a1i 11 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  1  e.  RR )
140138, 139readdcld 9623 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  RR )
141138, 140remulcld 9624 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  (
j  x.  ( j  +  1 ) )  e.  RR )
142 nncn 10544 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  CC )
143101a1i 11 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  1  e.  CC )
144142, 143addcld 9615 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  CC )
145 nnne0 10568 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  =/=  0 )
146142, 144, 145, 105mulne0d 10201 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  (
j  x.  ( j  +  1 ) )  =/=  0 )
147141, 146rereccld 10371 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  e.  RR )
148132, 136, 137, 147fvmptd 5955 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  ( F `  j )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
149130, 148syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( F `  j
)  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
150130nnred 10551 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  e.  RR )
15196a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
1  e.  RR )
152150, 151readdcld 9623 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  +  1 )  e.  RR )
153150, 152remulcld 9624 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  x.  (
j  +  1 ) )  e.  RR )
154150recnd 9622 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  e.  CC )
155101a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
1  e.  CC )
156154, 155addcld 9615 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  +  1 )  e.  CC )
157130nnne0d 10580 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  =/=  0 )
158130, 105syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  +  1 )  =/=  0 )
159154, 156, 157, 158mulne0d 10201 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  x.  (
j  +  1 ) )  =/=  0 )
160153, 159rereccld 10371 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( 1  /  (
j  x.  ( j  +  1 ) ) )  e.  RR )
161 seqeq1 12078 . . . . . . . . . . . . 13  |-  ( N  =  1  ->  seq N (  +  ,  F )  =  seq 1 (  +  ,  F ) )
162131trireciplem 13636 . . . . . . . . . . . . . . 15  |-  seq 1
(  +  ,  F
)  ~~>  1
163 climrel 13278 . . . . . . . . . . . . . . . 16  |-  Rel  ~~>
164163releldmi 5239 . . . . . . . . . . . . . . 15  |-  (  seq 1 (  +  ,  F )  ~~>  1  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
165162, 164ax-mp 5 . . . . . . . . . . . . . 14  |-  seq 1
(  +  ,  F
)  e.  dom  ~~>
166165a1i 11 . . . . . . . . . . . . 13  |-  ( N  =  1  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
167161, 166eqeltrd 2555 . . . . . . . . . . . 12  |-  ( N  =  1  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
168167adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
169 simpl 457 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  N  e.  NN )
170 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  -.  N  =  1 )
171 elnn1uz2 11158 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
172169, 171sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
173172ord 377 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  ( -.  N  =  1  ->  N  e.  ( ZZ>= `  2
) ) )
174170, 173mpd 15 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  N  e.  ( ZZ>= `  2 )
)
175 uz2m1nn 11156 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
176174, 175syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  ( N  -  1 )  e.  NN )
177 nncn 10544 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  CC )
178177adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  N  e.  CC )
179101a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  1  e.  CC )
180178, 179npcand 9934 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  ( ( N  -  1 )  +  1 )  =  N )
181180eqcomd 2475 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  N  =  ( ( N  -  1 )  +  1 ) )
182181seqeq1d 12081 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  seq N (  +  ,  F )  =  seq ( ( N  -  1 )  +  1 ) (  +  ,  F ) )
183 id 22 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  1 )  e.  NN  ->  ( N  -  1 )  e.  NN )
184147recnd 9622 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  e.  CC )
185148, 184eqeltrd 2555 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  ( F `  j )  e.  CC )
186185adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  -  1 )  e.  NN  /\  j  e.  NN )  ->  ( F `  j
)  e.  CC )
187162a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  1 )  e.  NN  ->  seq 1 (  +  ,  F )  ~~>  1 )
188129, 183, 186, 187clim2ser 13440 . . . . . . . . . . . . . . 15  |-  ( ( N  -  1 )  e.  NN  ->  seq ( ( N  - 
1 )  +  1 ) (  +  ,  F )  ~~>  ( 1  -  (  seq 1
(  +  ,  F
) `  ( N  -  1 ) ) ) )
189188adantl 466 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  ( 1  -  (  seq 1
(  +  ,  F
) `  ( N  -  1 ) ) ) )
190182, 189eqbrtrd 4467 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  seq N (  +  ,  F )  ~~>  ( 1  -  (  seq 1
(  +  ,  F
) `  ( N  -  1 ) ) ) )
191163releldmi 5239 . . . . . . . . . . . . 13  |-  (  seq N (  +  ,  F )  ~~>  ( 1  -  (  seq 1
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
192190, 191syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( N  -  1
)  e.  NN )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
193169, 176, 192syl2anc 661 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
194168, 193pm2.61dan 789 . . . . . . . . . 10  |-  ( N  e.  NN  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
195128, 59, 149, 160, 194isumrecl 13543 . . . . . . . . 9  |-  ( N  e.  NN  ->  sum_ j  e.  ( ZZ>= `  N )
( 1  /  (
j  x.  ( j  +  1 ) ) )  e.  RR )
196130nnrpd 11255 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  e.  RR+ )
197196rpge0d 11260 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
0  <_  j )
198150, 197ge0p1rpd 11282 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  +  1 )  e.  RR+ )
199196, 198rpmulcld 11272 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
( j  x.  (
j  +  1 ) )  e.  RR+ )
200126adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
0  <_  1 )
201151, 199, 200divge0d 11292 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  N ) )  -> 
0  <_  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
202128, 59, 149, 160, 194, 201isumge0 13544 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <_ 
sum_ j  e.  (
ZZ>= `  N ) ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
203123, 195, 117, 202leadd2dd 10167 . . . . . . . 8  |-  ( N  e.  NN  ->  ( sum_ j  e.  ( 1 ... ( N  - 
1 ) ) ( 1  /  ( j  x.  ( j  +  1 ) ) )  +  0 )  <_ 
( sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  /  (
j  x.  ( j  +  1 ) ) )  +  sum_ j  e.  ( ZZ>= `  N )
( 1  /  (
j  x.  ( j  +  1 ) ) ) ) )
204117recnd 9622 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) )  e.  CC )
205204addid1d 9779 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sum_ j  e.  ( 1 ... ( N  - 
1 ) ) ( 1  /  ( j  x.  ( j  +  1 ) ) )  +  0 )  = 
sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  /  (
j  x.  ( j  +  1 ) ) ) )
206205eqcomd 2475 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  (
sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  /  (
j  x.  ( j  +  1 ) ) )  +  0 ) )
207 id 22 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN )
208148adantl 466 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( F `  j
)  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
209142adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  CC )
210101a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  CC )
211209, 210addcld 9615 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( j  +  1 )  e.  CC )
212209, 211mulcld 9616 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( j  x.  (
j  +  1 ) )  e.  CC )
213145adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  =/=  0 )
214105adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( j  +  1 )  =/=  0 )
215209, 211, 213, 214mulne0d 10201 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( j  x.  (
j  +  1 ) )  =/=  0 )
216212, 215reccld 10313 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 1  /  (
j  x.  ( j  +  1 ) ) )  e.  CC )
217165a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
218129, 128, 207, 208, 216, 217isumsplit 13615 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ j  e.  NN  ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  (
sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  /  (
j  x.  ( j  +  1 ) ) )  +  sum_ j  e.  ( ZZ>= `  N )
( 1  /  (
j  x.  ( j  +  1 ) ) ) ) )
219203, 206, 2183brtr4d 4477 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) )  <_  sum_ j  e.  NN  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
220 1z 10894 . . . . . . . . . . 11  |-  1  e.  ZZ
221220a1i 11 . . . . . . . . . 10  |-  ( T. 
->  1  e.  ZZ )
222148adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  j  e.  NN )  ->  ( F `  j )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
223184adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  j  e.  NN )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  e.  CC )
224162a1i 11 . . . . . . . . . 10  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  1 )
225129, 221, 222, 223, 224isumclim 13535 . . . . . . . . 9  |-  ( T. 
->  sum_ j  e.  NN  ( 1  /  (
j  x.  ( j  +  1 ) ) )  =  1 )
226225trud 1388 . . . . . . . 8  |-  sum_ j  e.  NN  ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  1
227226a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ j  e.  NN  ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  1 )
228219, 227breqtrd 4471 . . . . . 6  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) )  <_  1
)
229117, 118, 32, 127, 228lemul2ad 10486 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) ) )  <_ 
( ( 1  / 
4 )  x.  1 ) )
230 4cn 10613 . . . . . . . 8  |-  4  e.  CC
231230a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  4  e.  CC )
232119a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  4 )
233232gt0ne0d 10117 . . . . . . 7  |-  ( N  e.  NN  ->  4  =/=  0 )
234231, 233reccld 10313 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  4 )  e.  CC )
235109recnd 9622 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  / 
( j  x.  (
j  +  1 ) ) )  e.  CC )
23664, 234, 235fsummulc2 13562 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( 1  / 
( j  x.  (
j  +  1 ) ) ) )  = 
sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( 1  / 
4 )  x.  (
1  /  ( j  x.  ( j  +  1 ) ) ) ) )
237234mulid1d 9613 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  1 )  =  ( 1  / 
4 ) )
238229, 236, 2373brtr3d 4476 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( 1  /  4 )  x.  ( 1  /  (
j  x.  ( j  +  1 ) ) ) )  <_  (
1  /  4 ) )
23993, 111, 32, 116, 238letrd 9738 . . 3  |-  ( N  e.  NN  ->  sum_ j  e.  ( 1 ... ( N  -  1 ) ) ( ( B `
 j )  -  ( B `  ( j  +  1 ) ) )  <_  ( 1  /  4 ) )
24063, 239eqbrtrd 4467 . 2  |-  ( N  e.  NN  ->  (
( B `  1
)  -  ( B `
 N ) )  <_  ( 1  / 
4 ) )
24118, 28, 32, 240subled 10155 1  |-  ( N  e.  NN  ->  (
( B `  1
)  -  ( 1  /  4 ) )  <_  ( B `  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   2c2 10585   4c4 10587   ZZcz 10864   ZZ>=cuz 11082   RR+crp 11220   ...cfz 11672  ..^cfzo 11792    seqcseq 12075   ^cexp 12134   !cfa 12321   sqrcsqrt 13029    ~~> cli 13270   sum_csu 13471   _eceu 13660   logclog 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-e 13666  df-sin 13667  df-cos 13668  df-tan 13669  df-pi 13670  df-dvds 13848  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-ulm 22534  df-log 22700  df-cxp 22701
This theorem is referenced by:  stirlinglem13  31414
  Copyright terms: Public domain W3C validator