Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem11 Structured version   Unicode version

Theorem stirlinglem11 32048
Description:  B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem11.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem11.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem11.3  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
Assertion
Ref Expression
stirlinglem11  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  <  ( B `  N ) )
Distinct variable groups:    k, n    n, K    k, N, n
Allowed substitution hints:    A( k, n)    B( k, n)    K( k)

Proof of Theorem stirlinglem11
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 0red 9614 . . 3  |-  ( N  e.  NN  ->  0  e.  RR )
2 stirlinglem11.3 . . . . . 6  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
32a1i 11 . . . . 5  |-  ( N  e.  NN  ->  K  =  ( k  e.  NN  |->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  k ) ) ) ) )
4 simpr 461 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  1 )  ->  k  =  1 )
54oveq2d 6312 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  1 )  ->  ( 2  x.  k )  =  ( 2  x.  1 ) )
65oveq1d 6311 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  1 )  ->  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  1 )  +  1 ) )
76oveq2d 6312 . . . . . 6  |-  ( ( N  e.  NN  /\  k  =  1 )  ->  ( 1  / 
( ( 2  x.  k )  +  1 ) )  =  ( 1  /  ( ( 2  x.  1 )  +  1 ) ) )
85oveq2d 6312 . . . . . 6  |-  ( ( N  e.  NN  /\  k  =  1 )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  k
) )  =  ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  1 ) ) )
97, 8oveq12d 6314 . . . . 5  |-  ( ( N  e.  NN  /\  k  =  1 )  ->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  k ) ) )  =  ( ( 1  /  (
( 2  x.  1 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  1 ) ) ) )
10 1nn 10567 . . . . . 6  |-  1  e.  NN
1110a1i 11 . . . . 5  |-  ( N  e.  NN  ->  1  e.  NN )
12 2cnd 10629 . . . . . . . . 9  |-  ( N  e.  NN  ->  2  e.  CC )
13 1cnd 9629 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  CC )
1412, 13mulcld 9633 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  1 )  e.  CC )
1514, 13addcld 9632 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  +  1 )  e.  CC )
16 2t1e2 10705 . . . . . . . . . . 11  |-  ( 2  x.  1 )  =  2
1716oveq1i 6306 . . . . . . . . . 10  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
18 2p1e3 10680 . . . . . . . . . 10  |-  ( 2  +  1 )  =  3
1917, 18eqtri 2486 . . . . . . . . 9  |-  ( ( 2  x.  1 )  +  1 )  =  3
20 3ne0 10651 . . . . . . . . 9  |-  3  =/=  0
2119, 20eqnetri 2753 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  1 )  =/=  0
2221a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  +  1 )  =/=  0 )
2315, 22reccld 10334 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  1 )  +  1 ) )  e.  CC )
24 nncn 10564 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
2512, 24mulcld 9633 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
2625, 13addcld 9632 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
27 1red 9628 . . . . . . . . . 10  |-  ( N  e.  NN  ->  1  e.  RR )
28 2re 10626 . . . . . . . . . . . . 13  |-  2  e.  RR
2928a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  2  e.  RR )
30 nnre 10563 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR )
3129, 30remulcld 9641 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
3231, 27readdcld 9640 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
33 0lt1 10096 . . . . . . . . . . 11  |-  0  <  1
3433a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  1 )
35 2rp 11250 . . . . . . . . . . . . 13  |-  2  e.  RR+
3635a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  2  e.  RR+ )
37 nnrp 11254 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR+ )
3836, 37rpmulcld 11297 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
3927, 38ltaddrp2d 11311 . . . . . . . . . 10  |-  ( N  e.  NN  ->  1  <  ( ( 2  x.  N )  +  1 ) )
401, 27, 32, 34, 39lttrd 9760 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
4140gt0ne0d 10138 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
4226, 41reccld 10334 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
43 2nn0 10833 . . . . . . . . 9  |-  2  e.  NN0
4443a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  NN0 )
45 1nn0 10832 . . . . . . . . 9  |-  1  e.  NN0
4645a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  NN0 )
4744, 46nn0mulcld 10878 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  1 )  e.  NN0 )
4842, 47expcld 12313 . . . . . 6  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  1 ) )  e.  CC )
4923, 48mulcld 9633 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  1 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  1 ) ) )  e.  CC )
503, 9, 11, 49fvmptd 5961 . . . 4  |-  ( N  e.  NN  ->  ( K `  1 )  =  ( ( 1  /  ( ( 2  x.  1 )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  1 ) ) ) )
51 1re 9612 . . . . . . . . 9  |-  1  e.  RR
5228, 51remulcli 9627 . . . . . . . 8  |-  ( 2  x.  1 )  e.  RR
5352, 51readdcli 9626 . . . . . . 7  |-  ( ( 2  x.  1 )  +  1 )  e.  RR
5453, 21rereccli 10330 . . . . . 6  |-  ( 1  /  ( ( 2  x.  1 )  +  1 ) )  e.  RR
5554a1i 11 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  1 )  +  1 ) )  e.  RR )
5632, 41rereccld 10392 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR )
5756, 47reexpcld 12330 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  1 ) )  e.  RR )
5855, 57remulcld 9641 . . . 4  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  1 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  1 ) ) )  e.  RR )
5950, 58eqeltrd 2545 . . 3  |-  ( N  e.  NN  ->  ( K `  1 )  e.  RR )
60 stirlinglem11.1 . . . . . . . 8  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
6160stirlinglem2 32039 . . . . . . 7  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )
6261relogcld 23134 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( A `  N ) )  e.  RR )
63 nfcv 2619 . . . . . . 7  |-  F/_ n N
64 nfcv 2619 . . . . . . . 8  |-  F/_ n log
65 nfmpt1 4546 . . . . . . . . . 10  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
6660, 65nfcxfr 2617 . . . . . . . . 9  |-  F/_ n A
6766, 63nffv 5879 . . . . . . . 8  |-  F/_ n
( A `  N
)
6864, 67nffv 5879 . . . . . . 7  |-  F/_ n
( log `  ( A `  N )
)
69 fveq2 5872 . . . . . . . 8  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
7069fveq2d 5876 . . . . . . 7  |-  ( n  =  N  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  N )
) )
71 stirlinglem11.2 . . . . . . 7  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
7263, 68, 70, 71fvmptf 5973 . . . . . 6  |-  ( ( N  e.  NN  /\  ( log `  ( A `
 N ) )  e.  RR )  -> 
( B `  N
)  =  ( log `  ( A `  N
) ) )
7362, 72mpdan 668 . . . . 5  |-  ( N  e.  NN  ->  ( B `  N )  =  ( log `  ( A `  N )
) )
7473, 62eqeltrd 2545 . . . 4  |-  ( N  e.  NN  ->  ( B `  N )  e.  RR )
75 peano2nn 10568 . . . . . 6  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
7660stirlinglem2 32039 . . . . . . . 8  |-  ( ( N  +  1 )  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
7775, 76syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
7877relogcld 23134 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( A `  ( N  +  1
) ) )  e.  RR )
79 nfcv 2619 . . . . . . 7  |-  F/_ n
( N  +  1 )
8066, 79nffv 5879 . . . . . . . 8  |-  F/_ n
( A `  ( N  +  1 ) )
8164, 80nffv 5879 . . . . . . 7  |-  F/_ n
( log `  ( A `  ( N  +  1 ) ) )
82 fveq2 5872 . . . . . . . 8  |-  ( n  =  ( N  + 
1 )  ->  ( A `  n )  =  ( A `  ( N  +  1
) ) )
8382fveq2d 5876 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8479, 81, 83, 71fvmptf 5973 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN  /\  ( log `  ( A `
 ( N  + 
1 ) ) )  e.  RR )  -> 
( B `  ( N  +  1 ) )  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8575, 78, 84syl2anc 661 . . . . 5  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8685, 78eqeltrd 2545 . . . 4  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  e.  RR )
8774, 86resubcld 10008 . . 3  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  e.  RR )
8829, 27remulcld 9641 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  1 )  e.  RR )
89 0le2 10647 . . . . . . . . . 10  |-  0  <_  2
9089a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <_  2 )
91 0le1 10097 . . . . . . . . . 10  |-  0  <_  1
9291a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <_  1 )
9329, 27, 90, 92mulge0d 10150 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  1 ) )
9488, 93ge0p1rpd 11307 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  +  1 )  e.  RR+ )
9594rpreccld 11291 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  1 )  +  1 ) )  e.  RR+ )
9637rpge0d 11285 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <_  N )
9729, 30, 90, 96mulge0d 10150 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
9831, 97ge0p1rpd 11307 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR+ )
9998rpreccld 11291 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR+ )
100 2z 10917 . . . . . . . . 9  |-  2  e.  ZZ
101100a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  ZZ )
102 1z 10915 . . . . . . . . 9  |-  1  e.  ZZ
103102a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ZZ )
104101, 103zmulcld 10996 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  1 )  e.  ZZ )
10599, 104rpexpcld 12336 . . . . . 6  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  1 ) )  e.  RR+ )
10695, 105rpmulcld 11297 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  1 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  1 ) ) )  e.  RR+ )
10750, 106eqeltrd 2545 . . . 4  |-  ( N  e.  NN  ->  ( K `  1 )  e.  RR+ )
108107rpgt0d 11284 . . 3  |-  ( N  e.  NN  ->  0  <  ( K `  1
) )
10987, 59resubcld 10008 . . . . 5  |-  ( N  e.  NN  ->  (
( ( B `  N )  -  ( B `  ( N  +  1 ) ) )  -  ( K `
 1 ) )  e.  RR )
110 eqid 2457 . . . . . . 7  |-  ( ZZ>= `  ( 1  +  1 ) )  =  (
ZZ>= `  ( 1  +  1 ) )
111103peano2zd 10993 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  +  1 )  e.  ZZ )
112 nnuz 11141 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
1132a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  K  =  ( k  e.  NN  |->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  k
) ) ) ) )
114 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
115114oveq1d 6311 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
116115oveq2d 6312 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  j )  +  1 ) ) )
117114oveq2d 6312 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  j
) ) )
118116, 117oveq12d 6314 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  j ) ) ) )
119118adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  k  =  j )  ->  ( (
1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  k
) ) )  =  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  j ) ) ) )
120 simpr 461 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  NN )
121 2cnd 10629 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  2  e.  CC )
122 nncn 10564 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  CC )
123122adantl 466 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  CC )
124121, 123mulcld 9633 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 2  x.  j
)  e.  CC )
125 1cnd 9629 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  CC )
126124, 125addcld 9632 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 2  x.  j )  +  1 )  e.  CC )
127 0red 9614 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  0  e.  RR )
128 1red 9628 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  e.  RR )
12928a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  2  e.  RR )
130 nnre 10563 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  j  e.  RR )
131130adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  RR )
132129, 131remulcld 9641 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 2  x.  j
)  e.  RR )
133132, 128readdcld 9640 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 2  x.  j )  +  1 )  e.  RR )
13433a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  0  <  1 )
13535a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  2  e.  RR+ )
136 nnrp 11254 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  j  e.  RR+ )
137136adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  RR+ )
138135, 137rpmulcld 11297 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 2  x.  j
)  e.  RR+ )
139128, 138ltaddrp2d 11311 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  1  <  ( ( 2  x.  j )  +  1 ) )
140127, 128, 133, 134, 139lttrd 9760 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  0  <  ( ( 2  x.  j )  +  1 ) )
141140gt0ne0d 10138 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 2  x.  j )  +  1 )  =/=  0 )
142126, 141reccld 10334 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  CC )
14324adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  N  e.  CC )
144121, 143mulcld 9633 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 2  x.  N
)  e.  CC )
145144, 125addcld 9632 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 2  x.  N )  +  1 )  e.  CC )
14641adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 2  x.  N )  +  1 )  =/=  0 )
147145, 146reccld 10334 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 1  /  (
( 2  x.  N
)  +  1 ) )  e.  CC )
14843a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  2  e.  NN0 )
149 nnnn0 10823 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  NN0 )
150149adantl 466 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  NN0 )
151148, 150nn0mulcld 10878 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 2  x.  j
)  e.  NN0 )
152147, 151expcld 12313 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  j ) )  e.  CC )
153142, 152mulcld 9633 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  j ) ) )  e.  CC )
154113, 119, 120, 153fvmptd 5961 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( K `  j
)  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  j
) ) ) )
155 0red 9614 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  0  e.  RR )
156 1red 9628 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  1  e.  RR )
15728a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  ->  2  e.  RR )
158157, 130remulcld 9641 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  RR )
159158, 156readdcld 9640 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  e.  RR )
16033a1i 11 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  0  <  1 )
16135a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  ->  2  e.  RR+ )
162161, 136rpmulcld 11297 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  RR+ )
163156, 162ltaddrp2d 11311 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  1  <  ( ( 2  x.  j )  +  1 ) )
164155, 156, 159, 160, 163lttrd 9760 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  0  <  ( ( 2  x.  j )  +  1 ) )
165164gt0ne0d 10138 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  =/=  0 )
166165adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 2  x.  j )  +  1 )  =/=  0 )
167126, 166reccld 10334 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  CC )
168167, 152mulcld 9633 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  j ) ) )  e.  CC )
169154, 168eqeltrd 2545 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  ( K `  j
)  e.  CC )
170 eqid 2457 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 ) )  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
17160, 71, 170, 2stirlinglem9 32046 . . . . . . . 8  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( B `  N )  -  ( B `  ( N  +  1
) ) ) )
172112, 11, 169, 171clim2ser 13489 . . . . . . 7  |-  ( N  e.  NN  ->  seq ( 1  +  1 ) (  +  ,  K )  ~~>  ( ( ( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  -  (  seq 1
(  +  ,  K
) `  1 )
) )
173 peano2nn 10568 . . . . . . . . . . . . 13  |-  ( 1  e.  NN  ->  (
1  +  1 )  e.  NN )
174 uznnssnn 11153 . . . . . . . . . . . . 13  |-  ( ( 1  +  1 )  e.  NN  ->  ( ZZ>=
`  ( 1  +  1 ) )  C_  NN )
17510, 173, 174mp2b 10 . . . . . . . . . . . 12  |-  ( ZZ>= `  ( 1  +  1 ) )  C_  NN
176175a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( ZZ>=
`  ( 1  +  1 ) )  C_  NN )
177176sseld 3498 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
j  e.  ( ZZ>= `  ( 1  +  1 ) )  ->  j  e.  NN ) )
178177imdistani 690 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( N  e.  NN  /\  j  e.  NN ) )
179178, 154syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( K `  j
)  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  j
) ) ) )
18028a1i 11 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  2  e.  RR )
181 eluzelre 11116 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  j  e.  RR )
182180, 181remulcld 9641 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  ( 2  x.  j )  e.  RR )
183 1red 9628 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  1  e.  RR )
184182, 183readdcld 9640 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  ( (
2  x.  j )  +  1 )  e.  RR )
185175sseli 3495 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  j  e.  NN )
186185, 165syl 16 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  ( (
2  x.  j )  +  1 )  =/=  0 )
187184, 186rereccld 10392 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  ( 1  /  ( ( 2  x.  j )  +  1 ) )  e.  RR )
188187adantl 466 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  RR )
18932adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( ( 2  x.  N )  +  1 )  e.  RR )
19041adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( ( 2  x.  N )  +  1 )  =/=  0 )
191189, 190rereccld 10392 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( 1  /  (
( 2  x.  N
)  +  1 ) )  e.  RR )
192178, 151syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( 2  x.  j
)  e.  NN0 )
193191, 192reexpcld 12330 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  j ) )  e.  RR )
194188, 193remulcld 9641 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  j ) ) )  e.  RR )
195179, 194eqeltrd 2545 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( K `  j
)  e.  RR )
196 1red 9628 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  e.  RR )
19728a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
2  e.  RR )
198178, 131syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
j  e.  RR )
199197, 198remulcld 9641 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( 2  x.  j
)  e.  RR )
20089a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  2 )
201 0red 9614 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  0  e.  RR )
20289a1i 11 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  0  <_  2 )
203 1p1e2 10670 . . . . . . . . . . . . . . 15  |-  ( 1  +  1 )  =  2
204 eluzle 11118 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  ( 1  +  1 )  <_ 
j )
205203, 204syl5eqbrr 4490 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  2  <_  j )
206201, 180, 181, 202, 205letrd 9756 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  (
1  +  1 ) )  ->  0  <_  j )
207206adantl 466 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  j )
208197, 198, 200, 207mulge0d 10150 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( 2  x.  j ) )
209199, 208ge0p1rpd 11307 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( ( 2  x.  j )  +  1 )  e.  RR+ )
21091a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  1 )
211196, 209, 210divge0d 11317 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( 1  /  ( ( 2  x.  j )  +  1 ) ) )
21230adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  ->  N  e.  RR )
213197, 212remulcld 9641 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( 2  x.  N
)  e.  RR )
21496adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  N )
215197, 212, 200, 214mulge0d 10150 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( 2  x.  N ) )
216213, 215ge0p1rpd 11307 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( ( 2  x.  N )  +  1 )  e.  RR+ )
217196, 216, 210divge0d 11317 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )
218191, 192, 217expge0d 12331 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  j ) ) )
219188, 193, 211, 218mulge0d 10150 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( (
1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  j
) ) ) )
220219, 179breqtrrd 4482 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
0  <_  ( K `  j ) )
221110, 111, 172, 195, 220iserge0 13495 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( ( ( B `
 N )  -  ( B `  ( N  +  1 ) ) )  -  (  seq 1 (  +  ,  K ) `  1
) ) )
222 seq1 12123 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  (  seq 1 (  +  ,  K ) `  1
)  =  ( K `
 1 ) )
223102, 222mp1i 12 . . . . . . 7  |-  ( N  e.  NN  ->  (  seq 1 (  +  ,  K ) `  1
)  =  ( K `
 1 ) )
224223oveq2d 6312 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( B `  N )  -  ( B `  ( N  +  1 ) ) )  -  (  seq 1 (  +  ,  K ) `  1
) )  =  ( ( ( B `  N )  -  ( B `  ( N  +  1 ) ) )  -  ( K `
 1 ) ) )
225221, 224breqtrd 4480 . . . . 5  |-  ( N  e.  NN  ->  0  <_  ( ( ( B `
 N )  -  ( B `  ( N  +  1 ) ) )  -  ( K `
 1 ) ) )
2261, 109, 59, 225leadd1dd 10187 . . . 4  |-  ( N  e.  NN  ->  (
0  +  ( K `
 1 ) )  <_  ( ( ( ( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  -  ( K ` 
1 ) )  +  ( K `  1
) ) )
22750, 49eqeltrd 2545 . . . . 5  |-  ( N  e.  NN  ->  ( K `  1 )  e.  CC )
228227addid2d 9798 . . . 4  |-  ( N  e.  NN  ->  (
0  +  ( K `
 1 ) )  =  ( K ` 
1 ) )
22974recnd 9639 . . . . . 6  |-  ( N  e.  NN  ->  ( B `  N )  e.  CC )
23086recnd 9639 . . . . . 6  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  e.  CC )
231229, 230subcld 9950 . . . . 5  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  e.  CC )
232231, 227npcand 9954 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( B `
 N )  -  ( B `  ( N  +  1 ) ) )  -  ( K `
 1 ) )  +  ( K ` 
1 ) )  =  ( ( B `  N )  -  ( B `  ( N  +  1 ) ) ) )
233226, 228, 2323brtr3d 4485 . . 3  |-  ( N  e.  NN  ->  ( K `  1 )  <_  ( ( B `  N )  -  ( B `  ( N  +  1 ) ) ) )
2341, 59, 87, 108, 233ltletrd 9759 . 2  |-  ( N  e.  NN  ->  0  <  ( ( B `  N )  -  ( B `  ( N  +  1 ) ) ) )
23586, 74posdifd 10160 . 2  |-  ( N  e.  NN  ->  (
( B `  ( N  +  1 ) )  <  ( B `
 N )  <->  0  <  ( ( B `  N
)  -  ( B `
 ( N  + 
1 ) ) ) ) )
236234, 235mpbird 232 1  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  <  ( B `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   3c3 10607   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245    seqcseq 12110   ^cexp 12169   !cfa 12356   sqrcsqrt 13078   _eceu 13810   logclog 23068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-shft 12912  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324  df-sum 13521  df-ef 13815  df-e 13816  df-sin 13817  df-cos 13818  df-tan 13819  df-pi 13820  df-dvds 13999  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-mulg 16187  df-cntz 16482  df-cmn 16927  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lp 19764  df-perf 19765  df-cn 19855  df-cnp 19856  df-haus 19943  df-cmp 20014  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cncf 21508  df-limc 22396  df-dv 22397  df-ulm 22898  df-log 23070  df-cxp 23071
This theorem is referenced by:  stirlinglem13  32050
  Copyright terms: Public domain W3C validator