Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem10 Structured version   Unicode version

Theorem stirlinglem10 31819
Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole  B sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem10.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem10.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem10.4  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem10.5  |-  L  =  ( k  e.  NN  |->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
) )
Assertion
Ref Expression
stirlinglem10  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
Distinct variable groups:    k, n    n, K    n, L    k, N, n
Allowed substitution hints:    A( k, n)    B( k, n)    K( k)    L( k)

Proof of Theorem stirlinglem10
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11127 . 2  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10902 . 2  |-  ( N  e.  NN  ->  1  e.  ZZ )
3 stirlinglem10.1 . . 3  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
4 stirlinglem10.2 . . 3  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
5 eqid 2443 . . 3  |-  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 ) )  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
6 stirlinglem10.4 . . 3  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
73, 4, 5, 6stirlinglem9 31818 . 2  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( B `  N )  -  ( B `  ( N  +  1
) ) ) )
8 2cnd 10615 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  CC )
9 nncn 10551 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
108, 9mulcld 9619 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
11 1cnd 9615 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  CC )
1210, 11addcld 9618 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
1312sqcld 12290 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC )
14 0red 9600 . . . . . . . 8  |-  ( N  e.  NN  ->  0  e.  RR )
15 1red 9614 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  RR )
16 2re 10612 . . . . . . . . . . 11  |-  2  e.  RR
1716a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  RR )
18 nnre 10550 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR )
1917, 18remulcld 9627 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
2019, 15readdcld 9626 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
21 0lt1 10082 . . . . . . . . 9  |-  0  <  1
2221a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  1 )
23 2rp 11236 . . . . . . . . . . 11  |-  2  e.  RR+
2423a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  RR+ )
25 nnrp 11240 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
2624, 25rpmulcld 11283 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
2715, 26ltaddrp2d 11297 . . . . . . . 8  |-  ( N  e.  NN  ->  1  <  ( ( 2  x.  N )  +  1 ) )
2814, 15, 20, 22, 27lttrd 9746 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
2928gt0ne0d 10124 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
30 2z 10903 . . . . . . 7  |-  2  e.  ZZ
3130a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  e.  ZZ )
3212, 29, 31expne0d 12298 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 )
3313, 32reccld 10320 . . . 4  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  e.  CC )
3415renegcld 9993 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  e.  RR )
3520resqcld 12318 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  RR )
3635, 32rereccld 10378 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  e.  RR )
37 1re 9598 . . . . . . . 8  |-  1  e.  RR
38 lt0neg2 10066 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
0  <  1  <->  -u 1  <  0 ) )
3937, 38ax-mp 5 . . . . . . 7  |-  ( 0  <  1  <->  -u 1  <  0 )
4022, 39sylib 196 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  <  0 )
4120, 29sqgt0d 12320 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4235, 41recgt0d 10487 . . . . . 6  |-  ( N  e.  NN  ->  0  <  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
4334, 14, 36, 40, 42lttrd 9746 . . . . 5  |-  ( N  e.  NN  ->  -u 1  <  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
44 2nn 10700 . . . . . . . 8  |-  2  e.  NN
4544a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  2  e.  NN )
46 expgt1 12186 . . . . . . 7  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  RR  /\  2  e.  NN  /\  1  <  ( ( 2  x.  N )  +  1 ) )  ->  1  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4720, 45, 27, 46syl3anc 1229 . . . . . 6  |-  ( N  e.  NN  ->  1  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4835, 41elrpd 11265 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  RR+ )
4948recgt1d 11281 . . . . . 6  |-  ( N  e.  NN  ->  (
1  <  ( (
( 2  x.  N
)  +  1 ) ^ 2 )  <->  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  <  1 ) )
5047, 49mpbid 210 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  <  1 )
5136, 15absltd 13243 . . . . 5  |-  ( N  e.  NN  ->  (
( abs `  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) )  <  1  <->  ( -u 1  <  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  /\  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  <  1 ) ) )
5243, 50, 51mpbir2and 922 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )  <  1 )
53 1nn0 10818 . . . . 5  |-  1  e.  NN0
5453a1i 11 . . . 4  |-  ( N  e.  NN  ->  1  e.  NN0 )
55 stirlinglem10.5 . . . . . 6  |-  L  =  ( k  e.  NN  |->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
) )
5655a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  ->  L  =  ( k  e.  NN  |->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
k ) ) )
57 simpr 461 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  /\  k  =  j )  ->  k  =  j )
5857oveq2d 6297 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  /\  k  =  j )  ->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
)  =  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ j ) )
59 elnnuz 11128 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
6059biimpri 206 . . . . . 6  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
6160adantl 466 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
j  e.  NN )
6233adantr 465 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  CC )
6361nnnn0d 10859 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
j  e.  NN0 )
6462, 63expcld 12292 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ j
)  e.  CC )
6556, 58, 61, 64fvmptd 5946 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( L `  j
)  =  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ j ) )
6633, 52, 54, 65geolim2 13662 . . 3  |-  ( N  e.  NN  ->  seq 1 (  +  ,  L )  ~~>  ( ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) ) )
6733exp1d 12287 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  =  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
6813, 32dividd 10325 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  1 )
6968eqcomd 2451 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
7069oveq1d 6296 . . . . . 6  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
7148rpcnne0d 11276 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) )
72 divsubdir 10247 . . . . . . 7  |-  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  1  e.  CC  /\  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) )  ->  ( (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  =  ( ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  -  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ) )
7313, 11, 71, 72syl3anc 1229 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  -  1 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
74 ax-1cn 9553 . . . . . . . . . 10  |-  1  e.  CC
75 binom2 12265 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
7610, 74, 75sylancl 662 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
7776oveq1d 6296 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) )  - 
1 ) )
788, 9sqmuld 12304 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
79 sq2 12246 . . . . . . . . . . . . . . 15  |-  ( 2 ^ 2 )  =  4
8079a1i 11 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2 ^ 2 )  =  4 )
8180oveq1d 6296 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
8278, 81eqtrd 2484 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
8310mulid1d 9616 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  x.  1 )  =  ( 2  x.  N ) )
8483oveq2d 6297 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  ( ( 2  x.  N )  x.  1 ) )  =  ( 2  x.  ( 2  x.  N
) ) )
858, 8, 9mulassd 9622 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
86 2t2e4 10692 . . . . . . . . . . . . . . 15  |-  ( 2  x.  2 )  =  4
8786a1i 11 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2  x.  2 )  =  4 )
8887oveq1d 6296 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
8984, 85, 883eqtr2d 2490 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  ( ( 2  x.  N )  x.  1 ) )  =  ( 4  x.  N ) )
9082, 89oveq12d 6299 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
91 4cn 10620 . . . . . . . . . . . . 13  |-  4  e.  CC
9291a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  4  e.  CC )
939sqcld 12290 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
9492, 93, 9adddid 9623 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
959sqvald 12289 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ 2 )  =  ( N  x.  N
) )
969mulid1d 9616 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( N  x.  1 )  =  N )
9796eqcomd 2451 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  =  ( N  x.  1 ) )
9895, 97oveq12d 6299 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
999, 9, 11adddid 9623 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
10098, 99eqtr4d 2487 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
101100oveq2d 6297 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
10290, 94, 1013eqtr2d 2490 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
103 sq1 12244 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
104103a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1 ^ 2 )  =  1 )
105102, 104oveq12d 6299 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  +  1 ) )
106105oveq1d 6296 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
( 2  x.  N
)  x.  1 ) ) )  +  ( 1 ^ 2 ) )  -  1 )  =  ( ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  +  1 )  - 
1 ) )
1079, 11addcld 9618 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
1089, 107mulcld 9619 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  e.  CC )
10992, 108mulcld 9619 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
4  x.  ( N  x.  ( N  + 
1 ) ) )  e.  CC )
110109, 11pncand 9937 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 4  x.  ( N  x.  ( N  +  1 ) ) )  +  1 )  -  1 )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
11177, 106, 1103eqtrd 2488 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
112111oveq1d 6296 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  -  1 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
11370, 73, 1123eqtr2d 2490 . . . . 5  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
11467, 113oveq12d 6299 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )  =  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  / 
( ( 4  x.  ( N  x.  ( N  +  1 ) ) )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
115 4pos 10638 . . . . . . . . 9  |-  0  <  4
116115a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  4 )
117116gt0ne0d 10124 . . . . . . 7  |-  ( N  e.  NN  ->  4  =/=  0 )
118 nnne0 10575 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
11918, 15readdcld 9626 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
120 nngt0 10572 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
12118ltp1d 10483 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
12214, 18, 119, 120, 121lttrd 9746 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
123122gt0ne0d 10124 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
1249, 107, 118, 123mulne0d 10208 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =/=  0 )
12592, 108, 117, 124mulne0d 10208 . . . . . 6  |-  ( N  e.  NN  ->  (
4  x.  ( N  x.  ( N  + 
1 ) ) )  =/=  0 )
12611, 13, 109, 13, 32, 32, 125divdivdivd 10374 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 1  x.  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
12711, 13mulcomd 9620 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  x.  1 ) )
128127oveq1d 6296 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  x.  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  1 )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
12911mulid1d 9616 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  1 )  =  1 )
130129eqcomd 2451 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  =  ( 1  x.  1 ) )
131130oveq1d 6296 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )
13211, 92, 11, 108, 117, 124divmuldivd 10368 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  ( 1  /  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )
133131, 132eqtr4d 2487 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
13468, 133oveq12d 6299 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  x.  ( 1  /  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( 1  x.  ( ( 1  / 
4 )  x.  (
1  /  ( N  x.  ( N  + 
1 ) ) ) ) ) )
13513, 13, 11, 109, 32, 125divmuldivd 10368 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  x.  ( 1  /  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  1 )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
13692, 117reccld 10320 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  4 )  e.  CC )
137108, 124reccld 10320 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( N  x.  ( N  + 
1 ) ) )  e.  CC )
138136, 137mulcld 9619 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  ( 1  /  ( N  x.  ( N  +  1
) ) ) )  e.  CC )
139138mulid2d 9617 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( 1  /  4 )  x.  ( 1  / 
( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
140134, 135, 1393eqtr3d 2492 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  1 )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
141126, 128, 1403eqtrd 2488 . . . 4  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
142114, 141eqtrd 2484 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
14366, 142breqtrd 4461 . 2  |-  ( N  e.  NN  ->  seq 1 (  +  ,  L )  ~~>  ( ( 1  /  4 )  x.  ( 1  / 
( N  x.  ( N  +  1 ) ) ) ) )
14459biimpi 194 . . . 4  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
145144adantl 466 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
1466a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
147 oveq2 6289 . . . . . . . . . 10  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
148147oveq1d 6296 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
149148oveq2d 6297 . . . . . . . 8  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
150147oveq2d 6297 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
151149, 150oveq12d 6299 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
152151adantl 466 . . . . . 6  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  /\  k  =  n )  ->  ( (
1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  k
) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
153 elfznn 11725 . . . . . . 7  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
154153adantl 466 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
155 2cnd 10615 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
156154nncnd 10559 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
157155, 156mulcld 9619 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
158 1cnd 9615 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
159157, 158addcld 9618 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  e.  CC )
160 0red 9600 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  e.  RR )
161 1red 9614 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  e.  RR )
16216a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  RR )
163 nnre 10550 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR )
164162, 163remulcld 9627 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
165164, 161readdcld 9626 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
16621a1i 11 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  1 )
16723a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  RR+ )
168 nnrp 11240 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR+ )
169167, 168rpmulcld 11283 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
170161, 169ltaddrp2d 11297 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
171160, 161, 165, 166, 170lttrd 9746 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
172153, 171syl 16 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  0  <  ( ( 2  x.  n )  +  1 ) )
173172gt0ne0d 10124 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
174173adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  =/=  0
)
175159, 174reccld 10320 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  e.  CC )
1769adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
177155, 176mulcld 9619 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
178177, 158addcld 9618 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  e.  CC )
17929adantr 465 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  =/=  0
)
180178, 179reccld 10320 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  N )  +  1 ) )  e.  CC )
181 2nn0 10819 . . . . . . . . . 10  |-  2  e.  NN0
182181a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
183154nnnn0d 10859 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
184182, 183nn0mulcld 10864 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  NN0 )
185180, 184expcld 12292 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  e.  CC )
186175, 185mulcld 9619 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  e.  CC )
187146, 152, 154, 186fvmptd 5946 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
188187adantlr 714 . . . 4  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
189171gt0ne0d 10124 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
190165, 189rereccld 10378 . . . . . . 7  |-  ( n  e.  NN  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
191153, 190syl 16 . . . . . 6  |-  ( n  e.  ( 1 ... j )  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
192191adantl 466 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
19320, 29rereccld 10378 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR )
194193adantr 465 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  N )  +  1 ) )  e.  RR )
195194, 184reexpcld 12309 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  e.  RR )
196195adantlr 714 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  RR )
197192, 196remulcld 9627 . . . 4  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  RR )
198188, 197eqeltrd 2531 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  e.  RR )
199 readdcl 9578 . . . 4  |-  ( ( n  e.  RR  /\  i  e.  RR )  ->  ( n  +  i )  e.  RR )
200199adantl 466 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  RR  /\  i  e.  RR ) )  -> 
( n  +  i )  e.  RR )
201145, 198, 200seqcl 12109 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  K ) `
 j )  e.  RR )
20255a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  L  =  ( k  e.  NN  |->  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k ) ) )
203 oveq2 6289 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k )  =  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n ) )
204203adantl 466 . . . . . 6  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  /\  k  =  n )  ->  ( (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ k )  =  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )
20533adantr 465 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  CC )
206205, 183expcld 12292 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  CC )
207202, 204, 154, 206fvmptd 5946 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
20836adantr 465 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  RR )
209208, 183reexpcld 12309 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  RR )
210207, 209eqeltrd 2531 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  e.  RR )
211210adantlr 714 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  e.  RR )
212145, 211, 200seqcl 12109 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  L ) `
 j )  e.  RR )
21330a1i 11 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... j )  ->  2  e.  ZZ )
214 elfzelz 11699 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ZZ )
215213, 214zmulcld 10982 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  (
2  x.  n )  e.  ZZ )
216 1exp 12177 . . . . . . . . . . . 12  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
217215, 216syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
218 1exp 12177 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
219214, 218syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ n )  =  1 )
220217, 219eqtr4d 2487 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ ( 2  x.  n ) )  =  ( 1 ^ n ) )
221220adantl 466 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n
) )  =  ( 1 ^ n ) )
222178, 183, 182expmuld 12295 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) )
223221, 222oveq12d 6299 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1 ^ ( 2  x.  n ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) )  =  ( ( 1 ^ n
)  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) ) )
224158, 178, 179, 184expdivd 12306 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  =  ( ( 1 ^ (
2  x.  n ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) )
225178sqcld 12290 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  e.  CC )
22630a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
227178, 179, 226expne0d 12298 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  =/=  0
)
228158, 225, 227, 183expdivd 12306 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  =  ( ( 1 ^ n
)  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) ) )
229223, 224, 2283eqtr4d 2494 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
230229oveq2d 6297 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) )
231 1rp 11235 . . . . . . . . . . 11  |-  1  e.  RR+
232231a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  RR+ )
23316a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  RR )
234154nnred 10558 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  RR )
235233, 234remulcld 9627 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  RR )
236182nn0ge0d 10862 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  2
)
237183nn0ge0d 10862 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  n
)
238233, 234, 236, 237mulge0d 10136 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  (
2  x.  n ) )
239235, 238ge0p1rpd 11293 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  e.  RR+ )
240 1red 9614 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  RR )
241232rpge0d 11271 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  1
)
242161, 165, 170ltled 9736 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  <_  ( ( 2  x.  n )  +  1 ) )
243153, 242syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  1  <_  ( ( 2  x.  n )  +  1 ) )
244243adantl 466 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  <_  (
( 2  x.  n
)  +  1 ) )
245232, 239, 240, 241, 244lediv2ad 11289 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  <_  (
1  /  1 ) )
246158div1d 10319 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
1 )  =  1 )
247245, 246breqtrd 4461 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  <_  1
)
248154, 190syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  e.  RR )
24918adantr 465 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  N  e.  RR )
250233, 249remulcld 9627 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  RR )
25114, 18, 120ltled 9736 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <_  N )
252251adantr 465 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  N
)
253233, 249, 236, 252mulge0d 10136 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  (
2  x.  N ) )
254250, 253ge0p1rpd 11293 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  e.  RR+ )
255254, 226rpexpcld 12315 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  e.  RR+ )
256255rpreccld 11277 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  RR+ )
257214adantl 466 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
258256, 257rpexpcld 12315 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  RR+ )
259248, 240, 258lemul1d 11306 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  <_ 
1  <->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
1  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) ) )
260247, 259mpbid 210 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
1  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) )
261206mulid2d 9617 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
262260, 261breqtrd 4461 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
263230, 262eqbrtrd 4457 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  <_  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
264263, 187, 2073brtr4d 4467 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  <_  ( L `  n )
)
265264adantlr 714 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  <_  ( L `  n )
)
266145, 198, 211, 265serle 12144 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  K ) `
 j )  <_ 
(  seq 1 (  +  ,  L ) `  j ) )
2671, 2, 7, 143, 201, 212, 266climle 13444 1  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   class class class wbr 4437    |-> cmpt 4495   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    < clt 9631    <_ cle 9632    - cmin 9810   -ucneg 9811    / cdiv 10213   NNcn 10543   2c2 10592   4c4 10594   NN0cn0 10802   ZZcz 10871   ZZ>=cuz 11092   RR+crp 11231   ...cfz 11683    seqcseq 12089   ^cexp 12148   !cfa 12335   sqrcsqrt 13048   abscabs 13049    ~~> cli 13289   _eceu 13780   logclog 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ioc 11545  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-ef 13785  df-e 13786  df-sin 13787  df-cos 13788  df-tan 13789  df-pi 13790  df-dvds 13969  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-cmp 19865  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249  df-ulm 22750  df-log 22922  df-cxp 22923
This theorem is referenced by:  stirlinglem12  31821
  Copyright terms: Public domain W3C validator