Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem1 Structured version   Unicode version

Theorem stirlinglem1 31688
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem1.1  |-  H  =  ( n  e.  NN  |->  ( ( n ^
2 )  /  (
n  x.  ( ( 2  x.  n )  +  1 ) ) ) )
stirlinglem1.2  |-  F  =  ( n  e.  NN  |->  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )
stirlinglem1.3  |-  G  =  ( n  e.  NN  |->  ( 1  /  (
( 2  x.  n
)  +  1 ) ) )
stirlinglem1.4  |-  L  =  ( n  e.  NN  |->  ( 1  /  n
) )
Assertion
Ref Expression
stirlinglem1  |-  H  ~~>  ( 1  /  2 )

Proof of Theorem stirlinglem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 11129 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10906 . . . . 5  |-  1  e.  ZZ
32a1i 11 . . . 4  |-  ( T. 
->  1  e.  ZZ )
4 stirlinglem1.4 . . . . . . . . 9  |-  L  =  ( n  e.  NN  |->  ( 1  /  n
) )
5 ax-1cn 9562 . . . . . . . . . 10  |-  1  e.  CC
6 divcnv 13645 . . . . . . . . . 10  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
75, 6ax-mp 5 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  n ) )  ~~>  0
84, 7eqbrtri 4472 . . . . . . . 8  |-  L  ~~>  0
98a1i 11 . . . . . . 7  |-  ( T. 
->  L  ~~>  0 )
10 stirlinglem1.3 . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  ( 1  /  (
( 2  x.  n
)  +  1 ) ) )
11 nnex 10554 . . . . . . . . . 10  |-  NN  e.  _V
1211mptex 6142 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  e.  _V
1310, 12eqeltri 2551 . . . . . . . 8  |-  G  e. 
_V
1413a1i 11 . . . . . . 7  |-  ( T. 
->  G  e.  _V )
154a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  L  =  ( n  e.  NN  |->  ( 1  /  n ) ) )
16 simpr 461 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  =  k )  ->  n  =  k )
1716oveq2d 6311 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 1  /  n
)  =  ( 1  /  k ) )
18 id 22 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN )
19 nnrp 11241 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR+ )
2019rpreccld 11278 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
2115, 17, 18, 20fvmptd 5962 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( L `  k )  =  ( 1  / 
k ) )
22 nnrecre 10584 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
2321, 22eqeltrd 2555 . . . . . . . 8  |-  ( k  e.  NN  ->  ( L `  k )  e.  RR )
2423adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( L `  k )  e.  RR )
2510a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  G  =  ( n  e.  NN  |->  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )
2616oveq2d 6311 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 2  x.  n
)  =  ( 2  x.  k ) )
2726oveq1d 6310 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
2827oveq2d 6311 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 1  /  (
( 2  x.  n
)  +  1 ) )  =  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )
29 2re 10617 . . . . . . . . . . . . . 14  |-  2  e.  RR
3029a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  2  e.  RR )
31 nnre 10555 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
3230, 31remulcld 9636 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  RR )
33 0le2 10638 . . . . . . . . . . . . . 14  |-  0  <_  2
3433a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  0  <_  2 )
3519rpge0d 11272 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  0  <_  k )
3630, 31, 34, 35mulge0d 10141 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  0  <_  ( 2  x.  k
) )
3732, 36ge0p1rpd 11294 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR+ )
3837rpreccld 11278 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  e.  RR+ )
3925, 28, 18, 38fvmptd 5962 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( G `  k )  =  ( 1  / 
( ( 2  x.  k )  +  1 ) ) )
4038rpred 11268 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  e.  RR )
4139, 40eqeltrd 2555 . . . . . . . 8  |-  ( k  e.  NN  ->  ( G `  k )  e.  RR )
4241adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
43 1re 9607 . . . . . . . . . . 11  |-  1  e.  RR
4443a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  RR )
45 0le1 10088 . . . . . . . . . . 11  |-  0  <_  1
4645a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <_  1 )
4732, 44readdcld 9635 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR )
48 nncn 10556 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  CC )
4948mulid2d 9626 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
1  x.  k )  =  k )
50 1lt2 10714 . . . . . . . . . . . . . . 15  |-  1  <  2
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  1  <  2 )
5244, 30, 19, 51ltmul1dd 11319 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
1  x.  k )  <  ( 2  x.  k ) )
5349, 52eqbrtrrd 4475 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  <  ( 2  x.  k
) )
5432ltp1d 10488 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
2  x.  k )  <  ( ( 2  x.  k )  +  1 ) )
5531, 32, 47, 53, 54lttrd 9754 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  <  ( ( 2  x.  k )  +  1 ) )
5631, 47, 55ltled 9744 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  <_  ( ( 2  x.  k )  +  1 ) )
5719, 37, 44, 46, 56lediv2ad 11290 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  <_  ( 1  / 
k ) )
5857, 39, 213brtr4d 4483 . . . . . . . 8  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( L `  k
) )
5958adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( L `  k
) )
6038rpge0d 11272 . . . . . . . . 9  |-  ( k  e.  NN  ->  0  <_  ( 1  /  (
( 2  x.  k
)  +  1 ) ) )
6160, 39breqtrrd 4479 . . . . . . . 8  |-  ( k  e.  NN  ->  0  <_  ( G `  k
) )
6261adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  0  <_  ( G `  k
) )
631, 3, 9, 14, 24, 42, 59, 62climsqz2 13444 . . . . . 6  |-  ( T. 
->  G  ~~>  0 )
645a1i 11 . . . . . 6  |-  ( T. 
->  1  e.  CC )
65 stirlinglem1.2 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )
6611mptex 6142 . . . . . . . 8  |-  ( n  e.  NN  |->  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
6765, 66eqeltri 2551 . . . . . . 7  |-  F  e. 
_V
6867a1i 11 . . . . . 6  |-  ( T. 
->  F  e.  _V )
6942recnd 9634 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  CC )
7065a1i 11 . . . . . . . . 9  |-  ( k  e.  NN  ->  F  =  ( n  e.  NN  |->  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) )
7128oveq2d 6311 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( 1  -  ( 1  / 
( ( 2  x.  k )  +  1 ) ) ) )
725a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  CC )
73 2cnd 10620 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  2  e.  CC )
7473, 48mulcld 9628 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  CC )
7574, 72addcld 9627 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  CC )
7637rpne0d 11273 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  =/=  0 )
7775, 76reccld 10325 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
7872, 77subcld 9942 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  -  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )  e.  CC )
7970, 71, 18, 78fvmptd 5962 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  -  ( 1  /  (
( 2  x.  k
)  +  1 ) ) ) )
8039eqcomd 2475 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( G `  k ) )
8180oveq2d 6311 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  -  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( 1  -  ( G `  k
) ) )
8279, 81eqtrd 2508 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  -  ( G `  k
) ) )
8382adantl 466 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 1  -  ( G `  k
) ) )
841, 3, 63, 64, 68, 69, 83climsubc2 13441 . . . . 5  |-  ( T. 
->  F  ~~>  ( 1  -  0 ) )
85 1m0e1 10658 . . . . 5  |-  ( 1  -  0 )  =  1
8684, 85syl6breq 4492 . . . 4  |-  ( T. 
->  F  ~~>  1 )
8764halfcld 10795 . . . 4  |-  ( T. 
->  ( 1  /  2
)  e.  CC )
88 stirlinglem1.1 . . . . . 6  |-  H  =  ( n  e.  NN  |->  ( ( n ^
2 )  /  (
n  x.  ( ( 2  x.  n )  +  1 ) ) ) )
8911mptex 6142 . . . . . 6  |-  ( n  e.  NN  |->  ( ( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
9088, 89eqeltri 2551 . . . . 5  |-  H  e. 
_V
9190a1i 11 . . . 4  |-  ( T. 
->  H  e.  _V )
9279, 78eqeltrd 2555 . . . . 5  |-  ( k  e.  NN  ->  ( F `  k )  e.  CC )
9392adantl 466 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
94 nncn 10556 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
9594sqcld 12288 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n ^ 2 )  e.  CC )
9695mulid2d 9626 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  x.  ( n ^ 2 ) )  =  ( n ^
2 ) )
9796eqcomd 2475 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n ^ 2 )  =  ( 1  x.  ( n ^ 2 ) ) )
98 2cnd 10620 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  2  e.  CC )
9998, 94mulcld 9628 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  CC )
1005a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  e.  CC )
10194, 99, 100adddid 9632 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  x.  ( ( 2  x.  n )  +  1 ) )  =  ( ( n  x.  ( 2  x.  n ) )  +  ( n  x.  1 ) ) )
10294, 98, 94mul12d 9800 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n  x.  ( 2  x.  n ) )  =  ( 2  x.  ( n  x.  n
) ) )
10394sqvald 12287 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n ^ 2 )  =  ( n  x.  n ) )
104103eqcomd 2475 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
n  x.  n )  =  ( n ^
2 ) )
105104oveq2d 6311 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  ( n  x.  n ) )  =  ( 2  x.  ( n ^ 2 ) ) )
106102, 105eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  x.  ( 2  x.  n ) )  =  ( 2  x.  ( n ^ 2 ) ) )
10794mulid1d 9625 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  x.  1 )  =  n )
108106, 107oveq12d 6313 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n  x.  (
2  x.  n ) )  +  ( n  x.  1 ) )  =  ( ( 2  x.  ( n ^
2 ) )  +  n ) )
109 2ne0 10640 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
110109a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  2  =/=  0 )
11194, 98, 110divcan2d 10334 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  x.  ( n  /  2 ) )  =  n )
112111eqcomd 2475 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =  ( 2  x.  ( n  /  2
) ) )
113112oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( 2  x.  (
n ^ 2 ) )  +  n )  =  ( ( 2  x.  ( n ^
2 ) )  +  ( 2  x.  (
n  /  2 ) ) ) )
11494halfcld 10795 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n  /  2 )  e.  CC )
11598, 95, 114adddid 9632 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
2  x.  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( ( 2  x.  ( n ^
2 ) )  +  ( 2  x.  (
n  /  2 ) ) ) )
116113, 115eqtr4d 2511 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( 2  x.  (
n ^ 2 ) )  +  n )  =  ( 2  x.  ( ( n ^
2 )  +  ( n  /  2 ) ) ) )
117101, 108, 1163eqtrd 2512 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 2  x.  ( ( n ^
2 )  +  ( n  /  2 ) ) ) )
11897, 117oveq12d 6313 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  x.  ( n ^
2 ) )  / 
( 2  x.  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
11995, 114addcld 9627 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( n ^ 2 )  +  ( n  /  2 ) )  e.  CC )
120 nnrp 11241 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
121 2z 10908 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
122121a1i 11 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  2  e.  ZZ )
123120, 122rpexpcld 12313 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n ^ 2 )  e.  RR+ )
124120rphalfcld 11280 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  /  2 )  e.  RR+ )
125123, 124rpaddcld 11283 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n ^ 2 )  +  ( n  /  2 ) )  e.  RR+ )
126125rpne0d 11273 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( n ^ 2 )  +  ( n  /  2 ) )  =/=  0 )
127100, 98, 95, 119, 110, 126divmuldivd 10373 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( 1  /  2
)  x.  ( ( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( ( 1  x.  ( n ^
2 ) )  / 
( 2  x.  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
12895, 114pncand 9943 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  -  ( n  /  2 ) )  =  ( n ^
2 ) )
129128eqcomd 2475 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n ^ 2 )  =  ( ( ( n ^ 2 )  +  ( n  / 
2 ) )  -  ( n  /  2
) ) )
130129oveq1d 6310 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( ( ( ( n ^ 2 )  +  ( n  /  2 ) )  -  ( n  / 
2 ) )  / 
( ( n ^
2 )  +  ( n  /  2 ) ) ) )
131119, 114, 119, 126divsubdird 10371 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( ( ( n ^ 2 )  +  ( n  /  2
) )  -  (
n  /  2 ) )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( ( ( ( n ^ 2 )  +  ( n  /  2 ) )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) )  -  ( ( n  / 
2 )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
132119, 126dividd 10330 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  1 )
133132oveq1d 6310 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( ( ( n ^ 2 )  +  ( n  /  2
) )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) )  -  ( ( n  /  2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( 1  -  ( ( n  / 
2 )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
134130, 131, 1333eqtrd 2512 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( 1  -  ( ( n  / 
2 )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
135 nnne0 10580 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  n  =/=  0 )
13698, 94, 135divcld 10332 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  /  n )  e.  CC )
13798, 94, 110, 135divne0d 10348 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  /  n )  =/=  0 )
138114, 119, 136, 126, 137divcan5rd 10359 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( ( n  / 
2 )  x.  (
2  /  n ) )  /  ( ( ( n ^ 2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) ) )  =  ( ( n  /  2 )  / 
( ( n ^
2 )  +  ( n  /  2 ) ) ) )
13994, 98, 135, 110divcan6d 10351 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( n  /  2
)  x.  ( 2  /  n ) )  =  1 )
14095, 114, 136adddird 9633 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) )  =  ( ( ( n ^ 2 )  x.  ( 2  /  n ) )  +  ( ( n  / 
2 )  x.  (
2  /  n ) ) ) )
14195, 98, 94, 135div12d 10368 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
( n ^ 2 )  x.  ( 2  /  n ) )  =  ( 2  x.  ( ( n ^
2 )  /  n
) ) )
142 1e2m1 10663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  =  ( 2  -  1 )
143142oveq2i 6306 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n ^ 1 )  =  ( n ^ (
2  -  1 ) )
14494exp1d 12285 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  NN  ->  (
n ^ 1 )  =  n )
14594, 135, 122expm1d 12300 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  NN  ->  (
n ^ ( 2  -  1 ) )  =  ( ( n ^ 2 )  /  n ) )
146143, 144, 1453eqtr3a 2532 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  =  ( ( n ^ 2 )  /  n ) )
147146eqcomd 2475 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  n )  =  n )
148147oveq2d 6311 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
2  x.  ( ( n ^ 2 )  /  n ) )  =  ( 2  x.  n ) )
149141, 148eqtrd 2508 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( n ^ 2 )  x.  ( 2  /  n ) )  =  ( 2  x.  n ) )
150149, 139oveq12d 6313 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  x.  (
2  /  n ) )  +  ( ( n  /  2 )  x.  ( 2  /  n ) ) )  =  ( ( 2  x.  n )  +  1 ) )
151140, 150eqtrd 2508 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) )  =  ( ( 2  x.  n )  +  1 ) )
152139, 151oveq12d 6313 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( ( n  / 
2 )  x.  (
2  /  n ) )  /  ( ( ( n ^ 2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
153138, 152eqtr3d 2510 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( n  /  2
)  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
154153oveq2d 6311 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  -  ( ( n  /  2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) )
155134, 154eqtrd 2508 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) )
156155oveq2d 6311 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( 1  /  2
)  x.  ( ( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
157118, 127, 1563eqtr2d 2514 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
158157mpteq2ia 4535 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
15988, 158eqtri 2496 . . . . . . . 8  |-  H  =  ( n  e.  NN  |->  ( ( 1  / 
2 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
160159a1i 11 . . . . . . 7  |-  ( k  e.  NN  ->  H  =  ( n  e.  NN  |->  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) ) )
16171oveq2d 6311 . . . . . . 7  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 1  / 
2 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( ( 1  /  2 )  x.  ( 1  -  ( 1  /  (
( 2  x.  k
)  +  1 ) ) ) ) )
16272halfcld 10795 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  2 )  e.  CC )
163162, 78mulcld 9628 . . . . . . 7  |-  ( k  e.  NN  ->  (
( 1  /  2
)  x.  ( 1  -  ( 1  / 
( ( 2  x.  k )  +  1 ) ) ) )  e.  CC )
164160, 161, 18, 163fvmptd 5962 . . . . . 6  |-  ( k  e.  NN  ->  ( H `  k )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  k )  +  1 ) ) ) ) )
16579oveq2d 6311 . . . . . 6  |-  ( k  e.  NN  ->  (
( 1  /  2
)  x.  ( F `
 k ) )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  k )  +  1 ) ) ) ) )
166164, 165eqtr4d 2511 . . . . 5  |-  ( k  e.  NN  ->  ( H `  k )  =  ( ( 1  /  2 )  x.  ( F `  k
) ) )
167166adantl 466 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( H `  k )  =  ( ( 1  /  2 )  x.  ( F `  k
) ) )
1681, 3, 86, 87, 91, 93, 167climmulc2 13439 . . 3  |-  ( T. 
->  H  ~~>  ( (
1  /  2 )  x.  1 ) )
169168trud 1388 . 2  |-  H  ~~>  ( ( 1  /  2 )  x.  1 )
170 halfcn 10767 . . 3  |-  ( 1  /  2 )  e.  CC
171170mulid1i 9610 . 2  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
172169, 171breqtri 4476 1  |-  H  ~~>  ( 1  /  2 )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   _Vcvv 3118   class class class wbr 4453    |-> cmpt 4511   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817    / cdiv 10218   NNcn 10548   2c2 10597   ZZcz 10876   RR+crp 11232   ^cexp 12146    ~~> cli 13287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fl 11909  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-rlim 13292
This theorem is referenced by:  stirlinglem15  31702
  Copyright terms: Public domain W3C validator