Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem1 Structured version   Unicode version

Theorem stirlinglem1 29840
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem1.1  |-  H  =  ( n  e.  NN  |->  ( ( n ^
2 )  /  (
n  x.  ( ( 2  x.  n )  +  1 ) ) ) )
stirlinglem1.2  |-  F  =  ( n  e.  NN  |->  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )
stirlinglem1.3  |-  G  =  ( n  e.  NN  |->  ( 1  /  (
( 2  x.  n
)  +  1 ) ) )
stirlinglem1.4  |-  L  =  ( n  e.  NN  |->  ( 1  /  n
) )
Assertion
Ref Expression
stirlinglem1  |-  H  ~~>  ( 1  /  2 )

Proof of Theorem stirlinglem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 10888 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10668 . . . . 5  |-  1  e.  ZZ
32a1i 11 . . . 4  |-  ( T. 
->  1  e.  ZZ )
4 stirlinglem1.4 . . . . . . . . 9  |-  L  =  ( n  e.  NN  |->  ( 1  /  n
) )
5 ax-1cn 9332 . . . . . . . . . 10  |-  1  e.  CC
6 divcnv 13308 . . . . . . . . . 10  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
75, 6ax-mp 5 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  n ) )  ~~>  0
84, 7eqbrtri 4306 . . . . . . . 8  |-  L  ~~>  0
98a1i 11 . . . . . . 7  |-  ( T. 
->  L  ~~>  0 )
10 stirlinglem1.3 . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  ( 1  /  (
( 2  x.  n
)  +  1 ) ) )
11 nnex 10320 . . . . . . . . . 10  |-  NN  e.  _V
1211mptex 5943 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  ( ( 2  x.  n )  +  1 ) ) )  e.  _V
1310, 12eqeltri 2508 . . . . . . . 8  |-  G  e. 
_V
1413a1i 11 . . . . . . 7  |-  ( T. 
->  G  e.  _V )
154a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  L  =  ( n  e.  NN  |->  ( 1  /  n ) ) )
16 simpr 461 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  =  k )  ->  n  =  k )
1716oveq2d 6102 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 1  /  n
)  =  ( 1  /  k ) )
18 id 22 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN )
19 nnrp 10992 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR+ )
2019rpreccld 11029 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
2115, 17, 18, 20fvmptd 5774 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( L `  k )  =  ( 1  / 
k ) )
22 nnrecre 10350 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
2321, 22eqeltrd 2512 . . . . . . . 8  |-  ( k  e.  NN  ->  ( L `  k )  e.  RR )
2423adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( L `  k )  e.  RR )
2510a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  G  =  ( n  e.  NN  |->  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )
2616oveq2d 6102 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 2  x.  n
)  =  ( 2  x.  k ) )
2726oveq1d 6101 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
2827oveq2d 6102 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 1  /  (
( 2  x.  n
)  +  1 ) )  =  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )
29 2re 10383 . . . . . . . . . . . . . 14  |-  2  e.  RR
3029a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  2  e.  RR )
31 nnre 10321 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
3230, 31remulcld 9406 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  RR )
33 0le2 10404 . . . . . . . . . . . . . 14  |-  0  <_  2
3433a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  0  <_  2 )
3519rpge0d 11023 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  0  <_  k )
3630, 31, 34, 35mulge0d 9908 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  0  <_  ( 2  x.  k
) )
3732, 36ge0p1rpd 11045 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR+ )
3837rpreccld 11029 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  e.  RR+ )
3925, 28, 18, 38fvmptd 5774 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( G `  k )  =  ( 1  / 
( ( 2  x.  k )  +  1 ) ) )
4038rpred 11019 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  e.  RR )
4139, 40eqeltrd 2512 . . . . . . . 8  |-  ( k  e.  NN  ->  ( G `  k )  e.  RR )
4241adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
43 1re 9377 . . . . . . . . . . 11  |-  1  e.  RR
4443a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  RR )
45 0le1 9855 . . . . . . . . . . 11  |-  0  <_  1
4645a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <_  1 )
4732, 44readdcld 9405 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR )
48 nncn 10322 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  CC )
4948mulid2d 9396 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
1  x.  k )  =  k )
50 1lt2 10480 . . . . . . . . . . . . . . 15  |-  1  <  2
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  1  <  2 )
5244, 30, 19, 51ltmul1dd 11070 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
1  x.  k )  <  ( 2  x.  k ) )
5349, 52eqbrtrrd 4309 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  <  ( 2  x.  k
) )
5432ltp1d 10255 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
2  x.  k )  <  ( ( 2  x.  k )  +  1 ) )
5531, 32, 47, 53, 54lttrd 9524 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  <  ( ( 2  x.  k )  +  1 ) )
5631, 47, 55ltled 9514 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  <_  ( ( 2  x.  k )  +  1 ) )
5719, 37, 44, 46, 56lediv2ad 11041 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  <_  ( 1  / 
k ) )
5857, 39, 213brtr4d 4317 . . . . . . . 8  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( L `  k
) )
5958adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( L `  k
) )
6038rpge0d 11023 . . . . . . . . 9  |-  ( k  e.  NN  ->  0  <_  ( 1  /  (
( 2  x.  k
)  +  1 ) ) )
6160, 39breqtrrd 4313 . . . . . . . 8  |-  ( k  e.  NN  ->  0  <_  ( G `  k
) )
6261adantl 466 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  0  <_  ( G `  k
) )
631, 3, 9, 14, 24, 42, 59, 62climsqz2 13111 . . . . . 6  |-  ( T. 
->  G  ~~>  0 )
645a1i 11 . . . . . 6  |-  ( T. 
->  1  e.  CC )
65 stirlinglem1.2 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) )
6611mptex 5943 . . . . . . . 8  |-  ( n  e.  NN  |->  ( 1  -  ( 1  / 
( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
6765, 66eqeltri 2508 . . . . . . 7  |-  F  e. 
_V
6867a1i 11 . . . . . 6  |-  ( T. 
->  F  e.  _V )
6942recnd 9404 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  CC )
7065a1i 11 . . . . . . . . 9  |-  ( k  e.  NN  ->  F  =  ( n  e.  NN  |->  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) ) )
7128oveq2d 6102 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( 1  -  ( 1  / 
( ( 2  x.  k )  +  1 ) ) ) )
725a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  CC )
73 2cnd 10386 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  2  e.  CC )
7473, 48mulcld 9398 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  CC )
7574, 72addcld 9397 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  CC )
7637rpne0d 11024 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  =/=  0 )
7775, 76reccld 10092 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
7872, 77subcld 9711 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  -  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )  e.  CC )
7970, 71, 18, 78fvmptd 5774 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  -  ( 1  /  (
( 2  x.  k
)  +  1 ) ) ) )
8039eqcomd 2443 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( G `  k ) )
8180oveq2d 6102 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  -  ( 1  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( 1  -  ( G `  k
) ) )
8279, 81eqtrd 2470 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  -  ( G `  k
) ) )
8382adantl 466 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 1  -  ( G `  k
) ) )
841, 3, 63, 64, 68, 69, 83climsubc2 13108 . . . . 5  |-  ( T. 
->  F  ~~>  ( 1  -  0 ) )
85 1m0e1 10424 . . . . 5  |-  ( 1  -  0 )  =  1
8684, 85syl6breq 4326 . . . 4  |-  ( T. 
->  F  ~~>  1 )
8764halfcld 10561 . . . 4  |-  ( T. 
->  ( 1  /  2
)  e.  CC )
88 stirlinglem1.1 . . . . . 6  |-  H  =  ( n  e.  NN  |->  ( ( n ^
2 )  /  (
n  x.  ( ( 2  x.  n )  +  1 ) ) ) )
8911mptex 5943 . . . . . 6  |-  ( n  e.  NN  |->  ( ( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
9088, 89eqeltri 2508 . . . . 5  |-  H  e. 
_V
9190a1i 11 . . . 4  |-  ( T. 
->  H  e.  _V )
9279, 78eqeltrd 2512 . . . . 5  |-  ( k  e.  NN  ->  ( F `  k )  e.  CC )
9392adantl 466 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
94 nncn 10322 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
9594sqcld 11998 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n ^ 2 )  e.  CC )
9695mulid2d 9396 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  x.  ( n ^ 2 ) )  =  ( n ^
2 ) )
9796eqcomd 2443 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n ^ 2 )  =  ( 1  x.  ( n ^ 2 ) ) )
98 2cnd 10386 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  2  e.  CC )
9998, 94mulcld 9398 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  CC )
1005a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  e.  CC )
10194, 99, 100adddid 9402 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  x.  ( ( 2  x.  n )  +  1 ) )  =  ( ( n  x.  ( 2  x.  n ) )  +  ( n  x.  1 ) ) )
10294, 98, 94mul12d 9570 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n  x.  ( 2  x.  n ) )  =  ( 2  x.  ( n  x.  n
) ) )
10394sqvald 11997 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n ^ 2 )  =  ( n  x.  n ) )
104103eqcomd 2443 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
n  x.  n )  =  ( n ^
2 ) )
105104oveq2d 6102 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  ( n  x.  n ) )  =  ( 2  x.  ( n ^ 2 ) ) )
106102, 105eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  x.  ( 2  x.  n ) )  =  ( 2  x.  ( n ^ 2 ) ) )
10794mulid1d 9395 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  x.  1 )  =  n )
108106, 107oveq12d 6104 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n  x.  (
2  x.  n ) )  +  ( n  x.  1 ) )  =  ( ( 2  x.  ( n ^
2 ) )  +  n ) )
109 2ne0 10406 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
110109a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  2  =/=  0 )
11194, 98, 110divcan2d 10101 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  x.  ( n  /  2 ) )  =  n )
112111eqcomd 2443 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =  ( 2  x.  ( n  /  2
) ) )
113112oveq2d 6102 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( 2  x.  (
n ^ 2 ) )  +  n )  =  ( ( 2  x.  ( n ^
2 ) )  +  ( 2  x.  (
n  /  2 ) ) ) )
11494halfcld 10561 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n  /  2 )  e.  CC )
11598, 95, 114adddid 9402 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
2  x.  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( ( 2  x.  ( n ^
2 ) )  +  ( 2  x.  (
n  /  2 ) ) ) )
116113, 115eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( 2  x.  (
n ^ 2 ) )  +  n )  =  ( 2  x.  ( ( n ^
2 )  +  ( n  /  2 ) ) ) )
117101, 108, 1163eqtrd 2474 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 2  x.  ( ( n ^
2 )  +  ( n  /  2 ) ) ) )
11897, 117oveq12d 6104 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  x.  ( n ^
2 ) )  / 
( 2  x.  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
11995, 114addcld 9397 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( n ^ 2 )  +  ( n  /  2 ) )  e.  CC )
120 nnrp 10992 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
121 2z 10670 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
122121a1i 11 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  2  e.  ZZ )
123120, 122rpexpcld 12023 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n ^ 2 )  e.  RR+ )
124120rphalfcld 11031 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  /  2 )  e.  RR+ )
125123, 124rpaddcld 11034 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n ^ 2 )  +  ( n  /  2 ) )  e.  RR+ )
126125rpne0d 11024 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( n ^ 2 )  +  ( n  /  2 ) )  =/=  0 )
127100, 98, 95, 119, 110, 126divmuldivd 10140 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( 1  /  2
)  x.  ( ( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( ( 1  x.  ( n ^
2 ) )  / 
( 2  x.  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
12895, 114pncand 9712 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  -  ( n  /  2 ) )  =  ( n ^
2 ) )
129128eqcomd 2443 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n ^ 2 )  =  ( ( ( n ^ 2 )  +  ( n  / 
2 ) )  -  ( n  /  2
) ) )
130129oveq1d 6101 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( ( ( ( n ^ 2 )  +  ( n  /  2 ) )  -  ( n  / 
2 ) )  / 
( ( n ^
2 )  +  ( n  /  2 ) ) ) )
131119, 114, 119, 126divsubdird 10138 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( ( ( n ^ 2 )  +  ( n  /  2
) )  -  (
n  /  2 ) )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( ( ( ( n ^ 2 )  +  ( n  /  2 ) )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) )  -  ( ( n  / 
2 )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
132119, 126dividd 10097 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  1 )
133132oveq1d 6101 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( ( ( n ^ 2 )  +  ( n  /  2
) )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) )  -  ( ( n  /  2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( 1  -  ( ( n  / 
2 )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
134130, 131, 1333eqtrd 2474 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( 1  -  ( ( n  / 
2 )  /  (
( n ^ 2 )  +  ( n  /  2 ) ) ) ) )
135 nnne0 10346 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  n  =/=  0 )
13698, 94, 135divcld 10099 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  /  n )  e.  CC )
13798, 94, 110, 135divne0d 10115 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  /  n )  =/=  0 )
138114, 119, 136, 126, 137divcan5rd 10126 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( ( n  / 
2 )  x.  (
2  /  n ) )  /  ( ( ( n ^ 2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) ) )  =  ( ( n  /  2 )  / 
( ( n ^
2 )  +  ( n  /  2 ) ) ) )
13994, 98, 135, 110divcan6d 10118 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( n  /  2
)  x.  ( 2  /  n ) )  =  1 )
14095, 114, 136adddird 9403 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) )  =  ( ( ( n ^ 2 )  x.  ( 2  /  n ) )  +  ( ( n  / 
2 )  x.  (
2  /  n ) ) ) )
14195, 98, 94, 135div12d 10135 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
( n ^ 2 )  x.  ( 2  /  n ) )  =  ( 2  x.  ( ( n ^
2 )  /  n
) ) )
142 1e2m1 10429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  =  ( 2  -  1 )
143142oveq2i 6097 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n ^ 1 )  =  ( n ^ (
2  -  1 ) )
14494exp1d 11995 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  NN  ->  (
n ^ 1 )  =  n )
14594, 135, 122expm1d 12010 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  NN  ->  (
n ^ ( 2  -  1 ) )  =  ( ( n ^ 2 )  /  n ) )
146143, 144, 1453eqtr3a 2494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  =  ( ( n ^ 2 )  /  n ) )
147146eqcomd 2443 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  n )  =  n )
148147oveq2d 6102 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
2  x.  ( ( n ^ 2 )  /  n ) )  =  ( 2  x.  n ) )
149141, 148eqtrd 2470 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( n ^ 2 )  x.  ( 2  /  n ) )  =  ( 2  x.  n ) )
150149, 139oveq12d 6104 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  x.  (
2  /  n ) )  +  ( ( n  /  2 )  x.  ( 2  /  n ) ) )  =  ( ( 2  x.  n )  +  1 ) )
151140, 150eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( ( n ^
2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) )  =  ( ( 2  x.  n )  +  1 ) )
152139, 151oveq12d 6104 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( ( n  / 
2 )  x.  (
2  /  n ) )  /  ( ( ( n ^ 2 )  +  ( n  /  2 ) )  x.  ( 2  /  n ) ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
153138, 152eqtr3d 2472 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( n  /  2
)  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
154153oveq2d 6102 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  -  ( ( n  /  2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) )
155134, 154eqtrd 2470 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  / 
2 ) ) )  =  ( 1  -  ( 1  /  (
( 2  x.  n
)  +  1 ) ) ) )
156155oveq2d 6102 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( 1  /  2
)  x.  ( ( n ^ 2 )  /  ( ( n ^ 2 )  +  ( n  /  2
) ) ) )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
157118, 127, 1563eqtr2d 2476 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
158157mpteq2ia 4369 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
15988, 158eqtri 2458 . . . . . . . 8  |-  H  =  ( n  e.  NN  |->  ( ( 1  / 
2 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) ) )
160159a1i 11 . . . . . . 7  |-  ( k  e.  NN  ->  H  =  ( n  e.  NN  |->  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  n )  +  1 ) ) ) ) ) )
16171oveq2d 6102 . . . . . . 7  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 1  / 
2 )  x.  (
1  -  ( 1  /  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( ( 1  /  2 )  x.  ( 1  -  ( 1  /  (
( 2  x.  k
)  +  1 ) ) ) ) )
16272halfcld 10561 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  2 )  e.  CC )
163162, 78mulcld 9398 . . . . . . 7  |-  ( k  e.  NN  ->  (
( 1  /  2
)  x.  ( 1  -  ( 1  / 
( ( 2  x.  k )  +  1 ) ) ) )  e.  CC )
164160, 161, 18, 163fvmptd 5774 . . . . . 6  |-  ( k  e.  NN  ->  ( H `  k )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  k )  +  1 ) ) ) ) )
16579oveq2d 6102 . . . . . 6  |-  ( k  e.  NN  ->  (
( 1  /  2
)  x.  ( F `
 k ) )  =  ( ( 1  /  2 )  x.  ( 1  -  (
1  /  ( ( 2  x.  k )  +  1 ) ) ) ) )
166164, 165eqtr4d 2473 . . . . 5  |-  ( k  e.  NN  ->  ( H `  k )  =  ( ( 1  /  2 )  x.  ( F `  k
) ) )
167166adantl 466 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( H `  k )  =  ( ( 1  /  2 )  x.  ( F `  k
) ) )
1681, 3, 86, 87, 91, 93, 167climmulc2 13106 . . 3  |-  ( T. 
->  H  ~~>  ( (
1  /  2 )  x.  1 ) )
169168trud 1378 . 2  |-  H  ~~>  ( ( 1  /  2 )  x.  1 )
170 halfcn 10533 . . 3  |-  ( 1  /  2 )  e.  CC
171170mulid1i 9380 . 2  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
172169, 171breqtri 4310 1  |-  H  ~~>  ( 1  /  2 )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369   T. wtru 1370    e. wcel 1756    =/= wne 2601   _Vcvv 2967   class class class wbr 4287    e. cmpt 4345   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   2c2 10363   ZZcz 10638   RR+crp 10983   ^cexp 11857    ~~> cli 12954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fl 11634  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959
This theorem is referenced by:  stirlinglem15  29854
  Copyright terms: Public domain W3C validator