HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stge1i Structured version   Unicode version

Theorem stge1i 26830
Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
sto1.1  |-  A  e. 
CH
Assertion
Ref Expression
stge1i  |-  ( S  e.  States  ->  ( 1  <_ 
( S `  A
)  <->  ( S `  A )  =  1 ) )

Proof of Theorem stge1i
StepHypRef Expression
1 sto1.1 . . . . . 6  |-  A  e. 
CH
2 stle1 26817 . . . . . 6  |-  ( S  e.  States  ->  ( A  e. 
CH  ->  ( S `  A )  <_  1
) )
31, 2mpi 17 . . . . 5  |-  ( S  e.  States  ->  ( S `  A )  <_  1
)
43anim1i 568 . . . 4  |-  ( ( S  e.  States  /\  1  <_  ( S `  A
) )  ->  (
( S `  A
)  <_  1  /\  1  <_  ( S `  A ) ) )
54ex 434 . . 3  |-  ( S  e.  States  ->  ( 1  <_ 
( S `  A
)  ->  ( ( S `  A )  <_  1  /\  1  <_ 
( S `  A
) ) ) )
6 stcl 26808 . . . . 5  |-  ( S  e.  States  ->  ( A  e. 
CH  ->  ( S `  A )  e.  RR ) )
71, 6mpi 17 . . . 4  |-  ( S  e.  States  ->  ( S `  A )  e.  RR )
8 1re 9591 . . . 4  |-  1  e.  RR
9 letri3 9666 . . . 4  |-  ( ( ( S `  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( S `  A )  =  1  <-> 
( ( S `  A )  <_  1  /\  1  <_  ( S `
 A ) ) ) )
107, 8, 9sylancl 662 . . 3  |-  ( S  e.  States  ->  ( ( S `
 A )  =  1  <->  ( ( S `
 A )  <_ 
1  /\  1  <_  ( S `  A ) ) ) )
115, 10sylibrd 234 . 2  |-  ( S  e.  States  ->  ( 1  <_ 
( S `  A
)  ->  ( S `  A )  =  1 ) )
12 1le1 10173 . . 3  |-  1  <_  1
13 breq2 4451 . . 3  |-  ( ( S `  A )  =  1  ->  (
1  <_  ( S `  A )  <->  1  <_  1 ) )
1412, 13mpbiri 233 . 2  |-  ( ( S `  A )  =  1  ->  1  <_  ( S `  A
) )
1511, 14impbid1 203 1  |-  ( S  e.  States  ->  ( 1  <_ 
( S `  A
)  <->  ( S `  A )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5586   RRcr 9487   1c1 9489    <_ cle 9625   CHcch 25519   Statescst 25552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-i2m1 9556  ax-1ne0 9557  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-hilex 25589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-icc 11532  df-sh 25797  df-ch 25812  df-st 26803
This theorem is referenced by:  stm1i  26835
  Copyright terms: Public domain W3C validator