Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stdpc5t Structured version   Unicode version

Theorem stdpc5t 30964
Description: Closed form of stdpc5 1936. (Possible to place it before 19.21t 1932 and use it to prove 19.21t 1932). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
stdpc5t  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  ->  ( ph  ->  A. x ps )
) )

Proof of Theorem stdpc5t
StepHypRef Expression
1 nfr 1897 . 2  |-  ( F/ x ph  ->  ( ph  ->  A. x ph )
)
2 alim 1653 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
31, 2syl9 70 1  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  ->  ( ph  ->  A. x ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1403   F/wnf 1637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878
This theorem depends on definitions:  df-bi 185  df-ex 1634  df-nf 1638
This theorem is referenced by:  bj-stdpc5  30965  bj-19.21t  30967
  Copyright terms: Public domain W3C validator