MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmet Structured version   Unicode version

Theorem stdbdmet 20887
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
Assertion
Ref Expression
stdbdmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Distinct variable groups:    x, y, C    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem stdbdmet
StepHypRef Expression
1 rpxr 11239 . . . 4  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 rpgt0 11243 . . . 4  |-  ( R  e.  RR+  ->  0  < 
R )
31, 2jca 532 . . 3  |-  ( R  e.  RR+  ->  ( R  e.  RR*  /\  0  <  R ) )
4 stdbdmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
54stdbdxmet 20886 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
653expb 1197 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  ( R  e. 
RR*  /\  0  <  R ) )  ->  D  e.  ( *Met `  X ) )
73, 6sylan2 474 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
8 xmetcl 20702 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
983expb 1197 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
109adantlr 714 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
111ad2antlr 726 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR* )
12 ifcl 3987 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR* )
1310, 11, 12syl2anc 661 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR* )
14 rpre 11238 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
1514ad2antlr 726 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR )
16 xmetge0 20715 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
17163expb 1197 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
1817adantlr 714 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
19 rpge0 11244 . . . . . . 7  |-  ( R  e.  RR+  ->  0  <_  R )
2019ad2antlr 726 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  R )
21 breq2 4457 . . . . . . 7  |-  ( ( x C y )  =  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  -> 
( 0  <_  (
x C y )  <->  0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R ) ) )
22 breq2 4457 . . . . . . 7  |-  ( R  =  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  -> 
( 0  <_  R  <->  0  <_  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) ) )
2321, 22ifboth 3981 . . . . . 6  |-  ( ( 0  <_  ( x C y )  /\  0  <_  R )  -> 
0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R ) )
2418, 20, 23syl2anc 661 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R ) )
25 xrmin2 11391 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  <_  R )
2610, 11, 25syl2anc 661 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  <_  R )
27 xrrege0 11387 . . . . 5  |-  ( ( ( if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  e. 
RR*  /\  R  e.  RR )  /\  (
0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R )  /\  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  <_  R ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR )
2813, 15, 24, 26, 27syl22anc 1229 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR )
2928ralrimivva 2888 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  A. x  e.  X  A. y  e.  X  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR )
304fmpt2 6862 . . 3  |-  ( A. x  e.  X  A. y  e.  X  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR  <->  D :
( X  X.  X
) --> RR )
3129, 30sylib 196 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D : ( X  X.  X ) --> RR )
32 ismet2 20704 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
337, 31, 32sylanbrc 664 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   ifcif 3945   class class class wbr 4453    X. cxp 5003   -->wf 5590   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   RRcr 9503   0cc0 9504   RR*cxr 9639    < clt 9640    <_ cle 9641   RR+crp 11232   *Metcxmt 18273   Metcme 18274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-2 10606  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-icc 11548  df-xmet 18282  df-met 18283
This theorem is referenced by:  mopnex  20890  xlebnum  21333
  Copyright terms: Public domain W3C validator