MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmet Structured version   Unicode version

Theorem stdbdmet 21517
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
Assertion
Ref Expression
stdbdmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Distinct variable groups:    x, y, C    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem stdbdmet
StepHypRef Expression
1 rpxr 11309 . . . 4  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 rpgt0 11313 . . . 4  |-  ( R  e.  RR+  ->  0  < 
R )
31, 2jca 534 . . 3  |-  ( R  e.  RR+  ->  ( R  e.  RR*  /\  0  <  R ) )
4 stdbdmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
54stdbdxmet 21516 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
653expb 1206 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  ( R  e. 
RR*  /\  0  <  R ) )  ->  D  e.  ( *Met `  X ) )
73, 6sylan2 476 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
8 xmetcl 21332 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
983expb 1206 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
109adantlr 719 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
111ad2antlr 731 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR* )
1210, 11ifcld 3952 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR* )
13 rpre 11308 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
1413ad2antlr 731 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR )
15 xmetge0 21345 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
16153expb 1206 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
1716adantlr 719 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
18 rpge0 11314 . . . . . . 7  |-  ( R  e.  RR+  ->  0  <_  R )
1918ad2antlr 731 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  R )
20 breq2 4424 . . . . . . 7  |-  ( ( x C y )  =  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  -> 
( 0  <_  (
x C y )  <->  0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R ) ) )
21 breq2 4424 . . . . . . 7  |-  ( R  =  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  -> 
( 0  <_  R  <->  0  <_  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) ) )
2220, 21ifboth 3945 . . . . . 6  |-  ( ( 0  <_  ( x C y )  /\  0  <_  R )  -> 
0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R ) )
2317, 19, 22syl2anc 665 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R ) )
24 xrmin2 11473 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  <_  R )
2510, 11, 24syl2anc 665 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  <_  R )
26 xrrege0 11469 . . . . 5  |-  ( ( ( if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  e. 
RR*  /\  R  e.  RR )  /\  (
0  <_  if (
( x C y )  <_  R , 
( x C y ) ,  R )  /\  if ( ( x C y )  <_  R ,  ( x C y ) ,  R )  <_  R ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR )
2712, 14, 23, 25, 26syl22anc 1265 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR )
2827ralrimivva 2846 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  A. x  e.  X  A. y  e.  X  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR )
294fmpt2 6870 . . 3  |-  ( A. x  e.  X  A. y  e.  X  if ( ( x C y )  <_  R ,  ( x C y ) ,  R
)  e.  RR  <->  D :
( X  X.  X
) --> RR )
3028, 29sylib 199 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D : ( X  X.  X ) --> RR )
31 ismet2 21334 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
327, 30, 31sylanbrc 668 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   ifcif 3909   class class class wbr 4420    X. cxp 4847   -->wf 5593   ` cfv 5597  (class class class)co 6301    |-> cmpt2 6303   RRcr 9538   0cc0 9539   RR*cxr 9674    < clt 9675    <_ cle 9676   RR+crp 11302   *Metcxmt 18942   Metcme 18943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-po 4770  df-so 4771  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-2 10668  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-icc 11642  df-xmet 18950  df-met 18951
This theorem is referenced by:  mopnex  21520  xlebnum  21982
  Copyright terms: Public domain W3C validator