HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltrthi Structured version   Unicode version

Theorem stcltrthi 27398
Description: Theorem for classically strong set of states. If there exists a "classically strong set of states" on lattice  CH (or actually any ortholattice, which would have an identical proof), then any two elements of the lattice commute, i.e., the lattice is distributive. (Proof due to Mladen Pavicic.) Theorem 3.3 of [MegPav2000] p. 2344. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltrth.1  |-  A  e. 
CH
stcltrth.2  |-  B  e. 
CH
stcltrth.3  |-  E. s  e.  States  A. x  e.  CH  A. y  e.  CH  (
( ( s `  x )  =  1  ->  ( s `  y )  =  1 )  ->  x  C_  y
)
Assertion
Ref Expression
stcltrthi  |-  B  C_  ( ( _|_ `  A
)  vH  ( A  i^i  B ) )
Distinct variable groups:    x, y,
s, A    x, B, y, s

Proof of Theorem stcltrthi
StepHypRef Expression
1 stcltrth.3 . 2  |-  E. s  e.  States  A. x  e.  CH  A. y  e.  CH  (
( ( s `  x )  =  1  ->  ( s `  y )  =  1 )  ->  x  C_  y
)
2 biid 236 . . . 4  |-  ( ( s  e.  States  /\  A. x  e.  CH  A. y  e.  CH  ( ( ( s `  x )  =  1  ->  (
s `  y )  =  1 )  ->  x  C_  y ) )  <-> 
( s  e.  States  /\ 
A. x  e.  CH  A. y  e.  CH  (
( ( s `  x )  =  1  ->  ( s `  y )  =  1 )  ->  x  C_  y
) ) )
3 stcltrth.1 . . . 4  |-  A  e. 
CH
4 stcltrth.2 . . . 4  |-  B  e. 
CH
52, 3, 4stcltrlem2 27397 . . 3  |-  ( ( s  e.  States  /\  A. x  e.  CH  A. y  e.  CH  ( ( ( s `  x )  =  1  ->  (
s `  y )  =  1 )  ->  x  C_  y ) )  ->  B  C_  (
( _|_ `  A
)  vH  ( A  i^i  B ) ) )
65rexlimiva 2942 . 2  |-  ( E. s  e.  States  A. x  e.  CH  A. y  e. 
CH  ( ( ( s `  x )  =  1  ->  (
s `  y )  =  1 )  ->  x  C_  y )  ->  B  C_  ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )
71, 6ax-mp 5 1  |-  B  C_  ( ( _|_ `  A
)  vH  ( A  i^i  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805    i^i cin 3460    C_ wss 3461   ` cfv 5570  (class class class)co 6270   1c1 9482   CHcch 26047   _|_cort 26048    vH chj 26051   Statescst 26080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cc 8806  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561  ax-hilex 26117  ax-hfvadd 26118  ax-hvcom 26119  ax-hvass 26120  ax-hv0cl 26121  ax-hvaddid 26122  ax-hfvmul 26123  ax-hvmulid 26124  ax-hvmulass 26125  ax-hvdistr1 26126  ax-hvdistr2 26127  ax-hvmul0 26128  ax-hfi 26197  ax-his1 26200  ax-his2 26201  ax-his3 26202  ax-his4 26203  ax-hcompl 26320
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-rlim 13397  df-sum 13594  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-starv 14802  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-unif 14810  df-hom 14811  df-cco 14812  df-rest 14915  df-topn 14916  df-0g 14934  df-gsum 14935  df-topgen 14936  df-pt 14937  df-prds 14940  df-xrs 14994  df-qtop 14999  df-imas 15000  df-xps 15002  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-mulg 16262  df-cntz 16557  df-cmn 17002  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-fbas 18614  df-fg 18615  df-cnfld 18619  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-cld 19690  df-ntr 19691  df-cls 19692  df-nei 19769  df-cn 19898  df-cnp 19899  df-lm 19900  df-haus 19986  df-tx 20232  df-hmeo 20425  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-xms 20992  df-ms 20993  df-tms 20994  df-cfil 21863  df-cau 21864  df-cmet 21865  df-grpo 25394  df-gid 25395  df-ginv 25396  df-gdiv 25397  df-ablo 25485  df-subgo 25505  df-vc 25640  df-nv 25686  df-va 25689  df-ba 25690  df-sm 25691  df-0v 25692  df-vs 25693  df-nmcv 25694  df-ims 25695  df-dip 25812  df-ssp 25836  df-ph 25929  df-cbn 25980  df-hnorm 26086  df-hba 26087  df-hvsub 26089  df-hlim 26090  df-hcau 26091  df-sh 26325  df-ch 26340  df-oc 26371  df-ch0 26372  df-chj 26429  df-st 27331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator