HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  staddi Unicode version

Theorem staddi 23702
Description: If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1  |-  A  e. 
CH
stle.2  |-  B  e. 
CH
Assertion
Ref Expression
staddi  |-  ( S  e.  States  ->  ( ( ( S `  A )  +  ( S `  B ) )  =  2  ->  ( S `  A )  =  1 ) )

Proof of Theorem staddi
StepHypRef Expression
1 stle.1 . . . . . . 7  |-  A  e. 
CH
2 stcl 23672 . . . . . . 7  |-  ( S  e.  States  ->  ( A  e. 
CH  ->  ( S `  A )  e.  RR ) )
31, 2mpi 17 . . . . . 6  |-  ( S  e.  States  ->  ( S `  A )  e.  RR )
4 stle.2 . . . . . . 7  |-  B  e. 
CH
5 stcl 23672 . . . . . . 7  |-  ( S  e.  States  ->  ( B  e. 
CH  ->  ( S `  B )  e.  RR ) )
64, 5mpi 17 . . . . . 6  |-  ( S  e.  States  ->  ( S `  B )  e.  RR )
73, 6readdcld 9071 . . . . 5  |-  ( S  e.  States  ->  ( ( S `
 A )  +  ( S `  B
) )  e.  RR )
8 ltne 9126 . . . . . 6  |-  ( ( ( ( S `  A )  +  ( S `  B ) )  e.  RR  /\  ( ( S `  A )  +  ( S `  B ) )  <  2 )  ->  2  =/=  (
( S `  A
)  +  ( S `
 B ) ) )
98necomd 2650 . . . . 5  |-  ( ( ( ( S `  A )  +  ( S `  B ) )  e.  RR  /\  ( ( S `  A )  +  ( S `  B ) )  <  2 )  ->  ( ( S `
 A )  +  ( S `  B
) )  =/=  2
)
107, 9sylan 458 . . . 4  |-  ( ( S  e.  States  /\  (
( S `  A
)  +  ( S `
 B ) )  <  2 )  -> 
( ( S `  A )  +  ( S `  B ) )  =/=  2 )
1110ex 424 . . 3  |-  ( S  e.  States  ->  ( ( ( S `  A )  +  ( S `  B ) )  <  2  ->  ( ( S `  A )  +  ( S `  B ) )  =/=  2 ) )
1211necon2bd 2616 . 2  |-  ( S  e.  States  ->  ( ( ( S `  A )  +  ( S `  B ) )  =  2  ->  -.  (
( S `  A
)  +  ( S `
 B ) )  <  2 ) )
13 1re 9046 . . . . . . . . 9  |-  1  e.  RR
1413a1i 11 . . . . . . . 8  |-  ( S  e.  States  ->  1  e.  RR )
15 stle1 23681 . . . . . . . . 9  |-  ( S  e.  States  ->  ( B  e. 
CH  ->  ( S `  B )  <_  1
) )
164, 15mpi 17 . . . . . . . 8  |-  ( S  e.  States  ->  ( S `  B )  <_  1
)
176, 14, 3, 16leadd2dd 9597 . . . . . . 7  |-  ( S  e.  States  ->  ( ( S `
 A )  +  ( S `  B
) )  <_  (
( S `  A
)  +  1 ) )
1817adantr 452 . . . . . 6  |-  ( ( S  e.  States  /\  ( S `  A )  <  1 )  ->  (
( S `  A
)  +  ( S `
 B ) )  <_  ( ( S `
 A )  +  1 ) )
19 ltadd1 9451 . . . . . . . . 9  |-  ( ( ( S `  A
)  e.  RR  /\  1  e.  RR  /\  1  e.  RR )  ->  (
( S `  A
)  <  1  <->  ( ( S `  A )  +  1 )  < 
( 1  +  1 ) ) )
2019biimpd 199 . . . . . . . 8  |-  ( ( ( S `  A
)  e.  RR  /\  1  e.  RR  /\  1  e.  RR )  ->  (
( S `  A
)  <  1  ->  ( ( S `  A
)  +  1 )  <  ( 1  +  1 ) ) )
213, 14, 14, 20syl3anc 1184 . . . . . . 7  |-  ( S  e.  States  ->  ( ( S `
 A )  <  1  ->  ( ( S `  A )  +  1 )  < 
( 1  +  1 ) ) )
2221imp 419 . . . . . 6  |-  ( ( S  e.  States  /\  ( S `  A )  <  1 )  ->  (
( S `  A
)  +  1 )  <  ( 1  +  1 ) )
23 readdcl 9029 . . . . . . . . 9  |-  ( ( ( S `  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( S `  A )  +  1 )  e.  RR )
243, 13, 23sylancl 644 . . . . . . . 8  |-  ( S  e.  States  ->  ( ( S `
 A )  +  1 )  e.  RR )
2513, 13readdcli 9059 . . . . . . . . 9  |-  ( 1  +  1 )  e.  RR
2625a1i 11 . . . . . . . 8  |-  ( S  e.  States  ->  ( 1  +  1 )  e.  RR )
27 lelttr 9121 . . . . . . . 8  |-  ( ( ( ( S `  A )  +  ( S `  B ) )  e.  RR  /\  ( ( S `  A )  +  1 )  e.  RR  /\  ( 1  +  1 )  e.  RR )  ->  ( ( ( ( S `  A
)  +  ( S `
 B ) )  <_  ( ( S `
 A )  +  1 )  /\  (
( S `  A
)  +  1 )  <  ( 1  +  1 ) )  -> 
( ( S `  A )  +  ( S `  B ) )  <  ( 1  +  1 ) ) )
287, 24, 26, 27syl3anc 1184 . . . . . . 7  |-  ( S  e.  States  ->  ( ( ( ( S `  A
)  +  ( S `
 B ) )  <_  ( ( S `
 A )  +  1 )  /\  (
( S `  A
)  +  1 )  <  ( 1  +  1 ) )  -> 
( ( S `  A )  +  ( S `  B ) )  <  ( 1  +  1 ) ) )
2928adantr 452 . . . . . 6  |-  ( ( S  e.  States  /\  ( S `  A )  <  1 )  ->  (
( ( ( S `
 A )  +  ( S `  B
) )  <_  (
( S `  A
)  +  1 )  /\  ( ( S `
 A )  +  1 )  <  (
1  +  1 ) )  ->  ( ( S `  A )  +  ( S `  B ) )  < 
( 1  +  1 ) ) )
3018, 22, 29mp2and 661 . . . . 5  |-  ( ( S  e.  States  /\  ( S `  A )  <  1 )  ->  (
( S `  A
)  +  ( S `
 B ) )  <  ( 1  +  1 ) )
31 df-2 10014 . . . . 5  |-  2  =  ( 1  +  1 )
3230, 31syl6breqr 4212 . . . 4  |-  ( ( S  e.  States  /\  ( S `  A )  <  1 )  ->  (
( S `  A
)  +  ( S `
 B ) )  <  2 )
3332ex 424 . . 3  |-  ( S  e.  States  ->  ( ( S `
 A )  <  1  ->  ( ( S `  A )  +  ( S `  B ) )  <  2 ) )
3433con3d 127 . 2  |-  ( S  e.  States  ->  ( -.  (
( S `  A
)  +  ( S `
 B ) )  <  2  ->  -.  ( S `  A )  <  1 ) )
35 stle1 23681 . . . . 5  |-  ( S  e.  States  ->  ( A  e. 
CH  ->  ( S `  A )  <_  1
) )
361, 35mpi 17 . . . 4  |-  ( S  e.  States  ->  ( S `  A )  <_  1
)
37 leloe 9117 . . . . 5  |-  ( ( ( S `  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( S `  A )  <_  1  <->  ( ( S `  A
)  <  1  \/  ( S `  A )  =  1 ) ) )
383, 13, 37sylancl 644 . . . 4  |-  ( S  e.  States  ->  ( ( S `
 A )  <_ 
1  <->  ( ( S `
 A )  <  1  \/  ( S `
 A )  =  1 ) ) )
3936, 38mpbid 202 . . 3  |-  ( S  e.  States  ->  ( ( S `
 A )  <  1  \/  ( S `
 A )  =  1 ) )
4039ord 367 . 2  |-  ( S  e.  States  ->  ( -.  ( S `  A )  <  1  ->  ( S `  A )  =  1 ) )
4112, 34, 403syld 53 1  |-  ( S  e.  States  ->  ( ( ( S `  A )  +  ( S `  B ) )  =  2  ->  ( S `  A )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077   2c2 10005   CHcch 22385   Statescst 22418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-hilex 22455
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-2 10014  df-icc 10879  df-sh 22662  df-ch 22677  df-st 23667
  Copyright terms: Public domain W3C validator