Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn Structured version   Unicode version

Theorem ssunsn 4154
 Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn

Proof of Theorem ssunsn
StepHypRef Expression
1 ssunsn2 4153 . 2
2 ancom 451 . . . 4
3 eqss 3476 . . . 4
42, 3bitr4i 255 . . 3
5 ancom 451 . . . 4
6 eqss 3476 . . . 4
75, 6bitr4i 255 . . 3
84, 7orbi12i 523 . 2
91, 8bitri 252 1
 Colors of variables: wff setvar class Syntax hints:   wb 187   wo 369   wa 370   wceq 1437   cun 3431   wss 3433  csn 3993 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ral 2778  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-sn 3994 This theorem is referenced by:  ssunpr  4156
 Copyright terms: Public domain W3C validator