MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun3 Structured version   Unicode version

Theorem ssun3 3669
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun3  |-  ( A 
C_  B  ->  A  C_  ( B  u.  C
) )

Proof of Theorem ssun3
StepHypRef Expression
1 ssun1 3667 . 2  |-  B  C_  ( B  u.  C
)
2 sstr2 3511 . 2  |-  ( A 
C_  B  ->  ( B  C_  ( B  u.  C )  ->  A  C_  ( B  u.  C
) ) )
31, 2mpi 17 1  |-  ( A 
C_  B  ->  A  C_  ( B  u.  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    u. cun 3474    C_ wss 3476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115  df-un 3481  df-in 3483  df-ss 3490
This theorem is referenced by:  ssun  3683  ssunsn2  4186  xpsspw  5116  xpsspwOLD  5117  uncmp  19697  alexsubALTlem3  20312  sxbrsigalem0  27910  wfrlem15  28962  altxpsspw  29232  bnj1450  33203  superuncl  36791
  Copyright terms: Public domain W3C validator