MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssufl Structured version   Unicode version

Theorem ssufl 19496
Description: If  Y is a subset of  X and filters extend to ultrafilters in  X, then they still do in  Y. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ssufl  |-  ( ( X  e. UFL  /\  Y  C_  X )  ->  Y  e. UFL )

Proof of Theorem ssufl
Dummy variables  f 
g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . . . 5  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  ->  X  e. UFL )
2 filfbas 19426 . . . . . . . 8  |-  ( f  e.  ( Fil `  Y
)  ->  f  e.  ( fBas `  Y )
)
32adantl 466 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  -> 
f  e.  ( fBas `  Y ) )
4 filsspw 19429 . . . . . . . . 9  |-  ( f  e.  ( Fil `  Y
)  ->  f  C_  ~P Y )
54adantl 466 . . . . . . . 8  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  -> 
f  C_  ~P Y
)
6 simplr 754 . . . . . . . . 9  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  ->  Y  C_  X )
7 sspwb 4546 . . . . . . . . 9  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
86, 7sylib 196 . . . . . . . 8  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  ->  ~P Y  C_  ~P X
)
95, 8sstrd 3371 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  -> 
f  C_  ~P X
)
10 fbasweak 19443 . . . . . . 7  |-  ( ( f  e.  ( fBas `  Y )  /\  f  C_ 
~P X  /\  X  e. UFL )  ->  f  e.  ( fBas `  X )
)
113, 9, 1, 10syl3anc 1218 . . . . . 6  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  -> 
f  e.  ( fBas `  X ) )
12 fgcl 19456 . . . . . 6  |-  ( f  e.  ( fBas `  X
)  ->  ( X filGen f )  e.  ( Fil `  X ) )
1311, 12syl 16 . . . . 5  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  -> 
( X filGen f )  e.  ( Fil `  X
) )
14 ufli 19492 . . . . 5  |-  ( ( X  e. UFL  /\  ( X filGen f )  e.  ( Fil `  X
) )  ->  E. u  e.  ( UFil `  X
) ( X filGen f )  C_  u )
151, 13, 14syl2anc 661 . . . 4  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  ->  E. u  e.  ( UFil `  X ) ( X filGen f )  C_  u )
16 ssfg 19450 . . . . . . . . . 10  |-  ( f  e.  ( fBas `  X
)  ->  f  C_  ( X filGen f ) )
1711, 16syl 16 . . . . . . . . 9  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  -> 
f  C_  ( X filGen f ) )
1817adantr 465 . . . . . . . 8  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  f  C_  ( X filGen f ) )
19 simprr 756 . . . . . . . 8  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  ( X filGen f )  C_  u )
2018, 19sstrd 3371 . . . . . . 7  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  f  C_  u )
21 filtop 19433 . . . . . . . 8  |-  ( f  e.  ( Fil `  Y
)  ->  Y  e.  f )
2221ad2antlr 726 . . . . . . 7  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  Y  e.  f )
2320, 22sseldd 3362 . . . . . 6  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  Y  e.  u )
24 simprl 755 . . . . . . 7  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  u  e.  ( UFil `  X
) )
256adantr 465 . . . . . . 7  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  Y  C_  X )
26 trufil 19488 . . . . . . 7  |-  ( ( u  e.  ( UFil `  X )  /\  Y  C_  X )  ->  (
( ut  Y )  e.  (
UFil `  Y )  <->  Y  e.  u ) )
2724, 25, 26syl2anc 661 . . . . . 6  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  (
( ut  Y )  e.  (
UFil `  Y )  <->  Y  e.  u ) )
2823, 27mpbird 232 . . . . 5  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  (
ut 
Y )  e.  (
UFil `  Y )
)
295adantr 465 . . . . . . 7  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  f  C_ 
~P Y )
30 restid2 14374 . . . . . . 7  |-  ( ( Y  e.  f  /\  f  C_  ~P Y )  ->  ( ft  Y )  =  f )
3122, 29, 30syl2anc 661 . . . . . 6  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  (
ft 
Y )  =  f )
32 ssrest 18785 . . . . . . 7  |-  ( ( u  e.  ( UFil `  X )  /\  f  C_  u )  ->  (
ft 
Y )  C_  (
ut 
Y ) )
3324, 20, 32syl2anc 661 . . . . . 6  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  (
ft 
Y )  C_  (
ut 
Y ) )
3431, 33eqsstr3d 3396 . . . . 5  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  f  C_  ( ut  Y ) )
35 sseq2 3383 . . . . . 6  |-  ( g  =  ( ut  Y )  ->  ( f  C_  g 
<->  f  C_  ( ut  Y
) ) )
3635rspcev 3078 . . . . 5  |-  ( ( ( ut  Y )  e.  (
UFil `  Y )  /\  f  C_  ( ut  Y ) )  ->  E. g  e.  ( UFil `  Y
) f  C_  g
)
3728, 34, 36syl2anc 661 . . . 4  |-  ( ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  /\  ( u  e.  ( UFil `  X
)  /\  ( X filGen f )  C_  u
) )  ->  E. g  e.  ( UFil `  Y
) f  C_  g
)
3815, 37rexlimddv 2850 . . 3  |-  ( ( ( X  e. UFL  /\  Y  C_  X )  /\  f  e.  ( Fil `  Y ) )  ->  E. g  e.  ( UFil `  Y ) f 
C_  g )
3938ralrimiva 2804 . 2  |-  ( ( X  e. UFL  /\  Y  C_  X )  ->  A. f  e.  ( Fil `  Y
) E. g  e.  ( UFil `  Y
) f  C_  g
)
40 ssexg 4443 . . . 4  |-  ( ( Y  C_  X  /\  X  e. UFL )  ->  Y  e.  _V )
4140ancoms 453 . . 3  |-  ( ( X  e. UFL  /\  Y  C_  X )  ->  Y  e.  _V )
42 isufl 19491 . . 3  |-  ( Y  e.  _V  ->  ( Y  e. UFL  <->  A. f  e.  ( Fil `  Y ) E. g  e.  (
UFil `  Y )
f  C_  g )
)
4341, 42syl 16 . 2  |-  ( ( X  e. UFL  /\  Y  C_  X )  ->  ( Y  e. UFL  <->  A. f  e.  ( Fil `  Y ) E. g  e.  (
UFil `  Y )
f  C_  g )
)
4439, 43mpbird 232 1  |-  ( ( X  e. UFL  /\  Y  C_  X )  ->  Y  e. UFL )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    C_ wss 3333   ~Pcpw 3865   ` cfv 5423  (class class class)co 6096   ↾t crest 14364   fBascfbas 17809   filGencfg 17810   Filcfil 19423   UFilcufil 19477  UFLcufl 19478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-rest 14366  df-fbas 17819  df-fg 17820  df-fil 19424  df-ufil 19479  df-ufl 19480
This theorem is referenced by:  ufldom  19540
  Copyright terms: Public domain W3C validator