Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd3 Unicode version

Theorem sstotbnd3 26375
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2  |-  N  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
sstotbnd3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e. 
~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) ) )
Distinct variable groups:    v, d, x, M    X, d, v, x    N, d, v, x    Y, d, v, x

Proof of Theorem sstotbnd3
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . 4  |-  N  =  ( M  |`  ( Y  X.  Y ) )
21sstotbnd2 26373 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3 elin 3490 . . . . . . . . 9  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  e.  ~P X  /\  v  e.  Fin ) )
4 rabfi 7292 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) }  e.  Fin )
54anim2i 553 . . . . . . . . 9  |-  ( ( v  e.  ~P X  /\  v  e.  Fin )  ->  ( v  e. 
~P X  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )
63, 5sylbi 188 . . . . . . . 8  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  (
v  e.  ~P X  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) )
76anim2i 553 . . . . . . 7  |-  ( ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  (
v  e.  ~P X  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) ) )
87ancoms 440 . . . . . 6  |-  ( ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) )  -> 
( Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  /\  (
v  e.  ~P X  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) ) )
9 an12 773 . . . . . 6  |-  ( ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  (
v  e.  ~P X  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) )  <->  ( v  e.  ~P X  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) ) )
108, 9sylib 189 . . . . 5  |-  ( ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) )  -> 
( v  e.  ~P X  /\  ( Y  C_  U_ x  e.  v  ( x ( ball `  M
) d )  /\  { x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) ) )
1110reximi2 2772 . . . 4  |-  ( E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  ->  E. v  e.  ~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) )
1211ralimi 2741 . . 3  |-  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  A. d  e.  RR+  E. v  e. 
~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) )
132, 12syl6bi 220 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  ->  A. d  e.  RR+  E. v  e. 
~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) ) )
14 ssrab2 3388 . . . . . . . . 9  |-  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) }  C_  v
15 elpwi 3767 . . . . . . . . . 10  |-  ( v  e.  ~P X  -> 
v  C_  X )
1615ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  v  e.  ~P X )  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )  ->  v  C_  X )
1714, 16syl5ss 3319 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  v  e.  ~P X )  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )  ->  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) }  C_  X )
18 simprr 734 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  v  e.  ~P X )  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )  ->  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) }  e.  Fin )
19 elfpw 7366 . . . . . . . 8  |-  ( { x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  ( ~P X  i^i  Fin ) 
<->  ( { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  C_  X  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) )
2017, 18, 19sylanbrc 646 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  v  e.  ~P X )  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )  ->  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) }  e.  ( ~P X  i^i  Fin )
)
21 ssel2 3303 . . . . . . . . . . . . 13  |-  ( ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  z  e.  Y )  ->  z  e.  U_ x  e.  v  ( x ( ball `  M ) d ) )
22 eliun 4057 . . . . . . . . . . . . 13  |-  ( z  e.  U_ x  e.  v  ( x (
ball `  M )
d )  <->  E. x  e.  v  z  e.  ( x ( ball `  M ) d ) )
2321, 22sylib 189 . . . . . . . . . . . 12  |-  ( ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  z  e.  Y )  ->  E. x  e.  v  z  e.  ( x ( ball `  M ) d ) )
24 inelcm 3642 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( x ( ball `  M
) d )  /\  z  e.  Y )  ->  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) )
2524expcom 425 . . . . . . . . . . . . . . 15  |-  ( z  e.  Y  ->  (
z  e.  ( x ( ball `  M
) d )  -> 
( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) ) )
2625ancrd 538 . . . . . . . . . . . . . 14  |-  ( z  e.  Y  ->  (
z  e.  ( x ( ball `  M
) d )  -> 
( ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/)  /\  z  e.  ( x ( ball `  M ) d ) ) ) )
2726reximdv 2777 . . . . . . . . . . . . 13  |-  ( z  e.  Y  ->  ( E. x  e.  v 
z  e.  ( x ( ball `  M
) d )  ->  E. x  e.  v 
( ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/)  /\  z  e.  ( x ( ball `  M ) d ) ) ) )
2827impcom 420 . . . . . . . . . . . 12  |-  ( ( E. x  e.  v  z  e.  ( x ( ball `  M
) d )  /\  z  e.  Y )  ->  E. x  e.  v  ( ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/)  /\  z  e.  ( x ( ball `  M ) d ) ) )
2923, 28sylancom 649 . . . . . . . . . . 11  |-  ( ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  z  e.  Y )  ->  E. x  e.  v  ( (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/)  /\  z  e.  ( x ( ball `  M
) d ) ) )
30 eliun 4057 . . . . . . . . . . . 12  |-  ( z  e.  U_ y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  (
y ( ball `  M
) d )  <->  E. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) } z  e.  ( y (
ball `  M )
d ) )
31 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
y ( ball `  M
) d )  =  ( x ( ball `  M ) d ) )
3231eleq2d 2471 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
z  e.  ( y ( ball `  M
) d )  <->  z  e.  ( x ( ball `  M ) d ) ) )
3332rexrab2 3062 . . . . . . . . . . . 12  |-  ( E. y  e.  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) } z  e.  ( y ( ball `  M
) d )  <->  E. x  e.  v  ( (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/)  /\  z  e.  ( x ( ball `  M
) d ) ) )
3430, 33bitri 241 . . . . . . . . . . 11  |-  ( z  e.  U_ y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  (
y ( ball `  M
) d )  <->  E. x  e.  v  ( (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/)  /\  z  e.  ( x ( ball `  M
) d ) ) )
3529, 34sylibr 204 . . . . . . . . . 10  |-  ( ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  z  e.  Y )  ->  z  e.  U_ y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  (
y ( ball `  M
) d ) )
3635ex 424 . . . . . . . . 9  |-  ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  ->  ( z  e.  Y  ->  z  e.  U_ y  e.  { x  e.  v  |  (
( x ( ball `  M ) d )  i^i  Y )  =/=  (/) }  ( y (
ball `  M )
d ) ) )
3736ssrdv 3314 . . . . . . . 8  |-  ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  ->  Y  C_  U_ y  e.  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  (
y ( ball `  M
) d ) )
3837ad2antrl 709 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  v  e.  ~P X )  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )  ->  Y  C_ 
U_ y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  (
y ( ball `  M
) d ) )
39 iuneq1 4066 . . . . . . . . 9  |-  ( w  =  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  ->  U_ y  e.  w  ( y ( ball `  M
) d )  = 
U_ y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  (
y ( ball `  M
) d ) )
4039sseq2d 3336 . . . . . . . 8  |-  ( w  =  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  ->  ( Y  C_  U_ y  e.  w  ( y (
ball `  M )
d )  <->  Y  C_  U_ y  e.  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  (
y ( ball `  M
) d ) ) )
4140rspcev 3012 . . . . . . 7  |-  ( ( { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ y  e.  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  (
y ( ball `  M
) d ) )  ->  E. w  e.  ( ~P X  i^i  Fin ) Y  C_  U_ y  e.  w  ( y
( ball `  M )
d ) )
4220, 38, 41syl2anc 643 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  v  e.  ~P X )  /\  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin ) )  ->  E. w  e.  ( ~P X  i^i  Fin ) Y  C_  U_ y  e.  w  ( y
( ball `  M )
d ) )
4342ex 424 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  v  e.  ~P X )  ->  (
( Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  /\  {
x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin )  ->  E. w  e.  ( ~P X  i^i  Fin ) Y  C_  U_ y  e.  w  ( y
( ball `  M )
d ) ) )
4443rexlimdva 2790 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( E. v  e.  ~P  X ( Y  C_  U_ x  e.  v  ( x ( ball `  M
) d )  /\  { x  e.  v  |  ( ( x (
ball `  M )
d )  i^i  Y
)  =/=  (/) }  e.  Fin )  ->  E. w  e.  ( ~P X  i^i  Fin ) Y  C_  U_ y  e.  w  ( y
( ball `  M )
d ) ) )
4544ralimdv 2745 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin )  ->  A. d  e.  RR+  E. w  e.  ( ~P X  i^i  Fin ) Y  C_  U_ y  e.  w  ( y
( ball `  M )
d ) ) )
461sstotbnd2 26373 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. w  e.  ( ~P X  i^i  Fin ) Y  C_  U_ y  e.  w  ( y
( ball `  M )
d ) ) )
4745, 46sylibrd 226 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin )  ->  N  e.  ( TotBnd `  Y )
) )
4813, 47impbid 184 1  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e. 
~P  X ( Y 
C_  U_ x  e.  v  ( x ( ball `  M ) d )  /\  { x  e.  v  |  ( ( x ( ball `  M
) d )  i^i 
Y )  =/=  (/) }  e.  Fin ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   U_ciun 4053    X. cxp 4835    |` cres 4839   ` cfv 5413  (class class class)co 6040   Fincfn 7068   RR+crp 10568   Metcme 16642   ballcbl 16643   TotBndctotbnd 26365
This theorem is referenced by:  cntotbnd  26395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-2 10014  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-totbnd 26367
  Copyright terms: Public domain W3C validator