Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd2 Structured version   Unicode version

Theorem sstotbnd2 31532
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2  |-  N  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
sstotbnd2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
Distinct variable groups:    v, d, x, M    X, d, v, x    N, d, v, x    Y, d, v, x

Proof of Theorem sstotbnd2
Dummy variables  c 
f  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . . 5  |-  N  =  ( M  |`  ( Y  X.  Y ) )
2 metres2 21156 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( M  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
31, 2syl5eqel 2494 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  N  e.  ( Met `  Y
) )
4 istotbnd3 31529 . . . . 5  |-  ( N  e.  ( TotBnd `  Y
)  <->  ( N  e.  ( Met `  Y
)  /\  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
54baib 904 . . . 4  |-  ( N  e.  ( Met `  Y
)  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
63, 5syl 17 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
7 simpllr 761 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  Y  C_  X )
8 sspwb 4639 . . . . . . . . . 10  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
97, 8sylib 196 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  ~P Y  C_  ~P X
)
10 ssrin 3663 . . . . . . . . 9  |-  ( ~P Y  C_  ~P X  ->  ( ~P Y  i^i  Fin )  C_  ( ~P X  i^i  Fin ) )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
( ~P Y  i^i  Fin )  C_  ( ~P X  i^i  Fin ) )
12 simprl 756 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
v  e.  ( ~P Y  i^i  Fin )
)
1311, 12sseldd 3442 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
v  e.  ( ~P X  i^i  Fin )
)
14 simprr 758 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  U_ x  e.  v 
( x ( ball `  N ) d )  =  Y )
15 metxmet 21127 . . . . . . . . . . . . . 14  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
1615ad4antr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  M  e.  ( *Met `  X ) )
17 elfpw 7855 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( ~P Y  i^i  Fin )  <->  ( v  C_  Y  /\  v  e. 
Fin ) )
1817simplbi 458 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( ~P Y  i^i  Fin )  ->  v  C_  Y )
1918adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  v  C_  Y )
2019sselda 3441 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  Y )
21 simp-4r 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  Y  C_  X )
22 dfss1 3643 . . . . . . . . . . . . . . 15  |-  ( Y 
C_  X  <->  ( X  i^i  Y )  =  Y )
2321, 22sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  ( X  i^i  Y )  =  Y )
2420, 23eleqtrrd 2493 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  ( X  i^i  Y
) )
25 simpllr 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  d  e.  RR+ )
2625rpxrd 11304 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  d  e.  RR* )
271blres 21224 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  ( X  i^i  Y )  /\  d  e.  RR* )  ->  ( x (
ball `  N )
d )  =  ( ( x ( ball `  M ) d )  i^i  Y ) )
2816, 24, 26, 27syl3anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  (
x ( ball `  N
) d )  =  ( ( x (
ball `  M )
d )  i^i  Y
) )
29 inss1 3658 . . . . . . . . . . . 12  |-  ( ( x ( ball `  M
) d )  i^i 
Y )  C_  (
x ( ball `  M
) d )
3028, 29syl6eqss 3491 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  (
x ( ball `  N
) d )  C_  ( x ( ball `  M ) d ) )
3130ralrimiva 2817 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  N )
d )  C_  (
x ( ball `  M
) d ) )
32 ss2iun 4286 . . . . . . . . . 10  |-  ( A. x  e.  v  (
x ( ball `  N
) d )  C_  ( x ( ball `  M ) d )  ->  U_ x  e.  v  ( x ( ball `  N ) d ) 
C_  U_ x  e.  v  ( x ( ball `  M ) d ) )
3331, 32syl 17 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  N )
d )  C_  U_ x  e.  v  ( x
( ball `  M )
d ) )
3433adantrr 715 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  U_ x  e.  v 
( x ( ball `  N ) d ) 
C_  U_ x  e.  v  ( x ( ball `  M ) d ) )
3514, 34eqsstr3d 3476 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  Y  C_  U_ x  e.  v  ( x (
ball `  M )
d ) )
3613, 35jca 530 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3736ex 432 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  d  e.  RR+ )  ->  ( (
v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  N ) d )  =  Y )  -> 
( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) ) )
3837reximdv2 2874 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  d  e.  RR+ )  ->  ( E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  (
x ( ball `  N
) d )  =  Y  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3938ralimdva 2811 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d ) ) )
406, 39sylbid 215 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
41 simpr 459 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  c  e.  RR+ )
4241rphalfcld 11315 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( c  /  2 )  e.  RR+ )
43 oveq2 6285 . . . . . . . . . 10  |-  ( d  =  ( c  / 
2 )  ->  (
x ( ball `  M
) d )  =  ( x ( ball `  M ) ( c  /  2 ) ) )
4443iuneq2d 4297 . . . . . . . . 9  |-  ( d  =  ( c  / 
2 )  ->  U_ x  e.  v  ( x
( ball `  M )
d )  =  U_ x  e.  v  (
x ( ball `  M
) ( c  / 
2 ) ) )
4544sseq2d 3469 . . . . . . . 8  |-  ( d  =  ( c  / 
2 )  ->  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  <->  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4645rexbidv 2917 . . . . . . 7  |-  ( d  =  ( c  / 
2 )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  <->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4746rspcv 3155 . . . . . 6  |-  ( ( c  /  2 )  e.  RR+  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4842, 47syl 17 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
49 elfpw 7855 . . . . . . . . . . 11  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
5049simprbi 462 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
5150ad2antrl 726 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  v  e.  Fin )
52 ssrab2 3523 . . . . . . . . 9  |-  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  C_  v
53 ssfi 7774 . . . . . . . . 9  |-  ( ( v  e.  Fin  /\  { x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  C_  v )  ->  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  e.  Fin )
5451, 52, 53sylancl 660 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  e.  Fin )
55 oveq1 6284 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
x ( ball `  M
) ( c  / 
2 ) )  =  ( y ( ball `  M ) ( c  /  2 ) ) )
5655ineq1d 3639 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
) )
57 incom 3631 . . . . . . . . . . . . . . 15  |-  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =  ( Y  i^i  ( y ( ball `  M
) ( c  / 
2 ) ) )
5856, 57syl6eq 2459 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  ( Y  i^i  (
y ( ball `  M
) ( c  / 
2 ) ) ) )
59 dfin5 3421 . . . . . . . . . . . . . 14  |-  ( Y  i^i  ( y (
ball `  M )
( c  /  2
) ) )  =  { z  e.  Y  |  z  e.  (
y ( ball `  M
) ( c  / 
2 ) ) }
6058, 59syl6eq 2459 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  { z  e.  Y  |  z  e.  (
y ( ball `  M
) ( c  / 
2 ) ) } )
6160neeq1d 2680 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  { z  e.  Y  |  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) }  =/=  (/) ) )
62 rabn0 3758 . . . . . . . . . . . 12  |-  ( { z  e.  Y  | 
z  e.  ( y ( ball `  M
) ( c  / 
2 ) ) }  =/=  (/)  <->  E. z  e.  Y  z  e.  ( y
( ball `  M )
( c  /  2
) ) )
6361, 62syl6bb 261 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
6463elrab 3206 . . . . . . . . . 10  |-  ( y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  <->  ( y  e.  v  /\  E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
6564simprbi 462 . . . . . . . . 9  |-  ( y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  ->  E. z  e.  Y  z  e.  ( y (
ball `  M )
( c  /  2
) ) )
6665rgen 2763 . . . . . . . 8  |-  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) )
67 eleq1 2474 . . . . . . . . 9  |-  ( z  =  ( f `  y )  ->  (
z  e.  ( y ( ball `  M
) ( c  / 
2 ) )  <->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
6867ac6sfi 7797 . . . . . . . 8  |-  ( ( { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  e.  Fin  /\  A. y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) )  ->  E. f
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
6954, 66, 68sylancl 660 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  E. f
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
70 fdm 5717 . . . . . . . . . . . . . 14  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  ->  dom  f  =  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } )
7170ad2antrl 726 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  dom  f  =  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } )
7271, 52syl6eqss 3491 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  dom  f  C_  v )
73 simprl 756 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y )
7471feq2d 5700 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f : dom  f --> Y  <->  f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y ) )
7573, 74mpbird 232 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  f : dom  f --> Y )
76 simprr 758 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  (
f `  y )  e.  ( y ( ball `  M ) ( c  /  2 ) ) )
77 ffn 5713 . . . . . . . . . . . . . . . . . 18  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
f  Fn  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } )
78 elpreima 5984 . . . . . . . . . . . . . . . . . 18  |-  ( f  Fn  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  ->  ( y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
7977, 78syl 17 . . . . . . . . . . . . . . . . 17  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
( y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
8079baibd 910 . . . . . . . . . . . . . . . 16  |-  ( ( f : { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } --> Y  /\  y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } )  ->  ( y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) )  <->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
8180ralbidva 2839 . . . . . . . . . . . . . . 15  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
( A. y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  <->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  (
f `  y )  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
8281ad2antrl 726 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <->  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
8376, 82mpbird 232 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) ) )
84 id 22 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  y  =  x )
85 oveq1 6284 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
y ( ball `  M
) ( c  / 
2 ) )  =  ( x ( ball `  M ) ( c  /  2 ) ) )
8685imaeq2d 5156 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  =  ( `' f
" ( x (
ball `  M )
( c  /  2
) ) ) )
8784, 86eleq12d 2484 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
x  e.  ( `' f " ( x ( ball `  M
) ( c  / 
2 ) ) ) ) )
8887ralrab2 3214 . . . . . . . . . . . . 13  |-  ( A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <->  A. x  e.  v 
( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) )
8983, 88sylib 196 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. x  e.  v  ( (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  x  e.  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) ) ) )
9072, 75, 893jca 1177 . . . . . . . . . . 11  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )
9190ex 432 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) ) )
9251, 91syl 17 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) ) )
93 simpr2 1004 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f : dom  f
--> Y )
94 frn 5719 . . . . . . . . . . . . 13  |-  ( f : dom  f --> Y  ->  ran  f  C_  Y )
9593, 94syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  C_  Y )
96 ffn 5713 . . . . . . . . . . . . . . 15  |-  ( f : dom  f --> Y  ->  f  Fn  dom  f )
9793, 96syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f  Fn  dom  f )
9851adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  v  e.  Fin )
99 simpr1 1003 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  C_  v )
100 ssfi 7774 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  Fin  /\  dom  f  C_  v )  ->  dom  f  e.  Fin )
10198, 99, 100syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  e.  Fin )
102 fnfi 7831 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  dom  f  /\  dom  f  e.  Fin )  ->  f  e.  Fin )
10397, 101, 102syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f  e.  Fin )
104 rnfi 7838 . . . . . . . . . . . . 13  |-  ( f  e.  Fin  ->  ran  f  e.  Fin )
105103, 104syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  e.  Fin )
106 elfpw 7855 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P Y  i^i  Fin )  <->  ( ran  f  C_  Y  /\  ran  f  e.  Fin ) )
10795, 105, 106sylanbrc 662 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  e.  ( ~P Y  i^i  Fin ) )
108 oveq1 6284 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x ( ball `  N
) c )  =  ( z ( ball `  N ) c ) )
109108cbviunv 4309 . . . . . . . . . . . 12  |-  U_ x  e.  ran  f ( x ( ball `  N
) c )  = 
U_ z  e.  ran  f ( z (
ball `  N )
c )
1103ad4antr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  N  e.  ( Met `  Y
) )
111 metxmet 21127 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( Met `  Y
)  ->  N  e.  ( *Met `  Y
) )
112110, 111syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  N  e.  ( *Met `  Y ) )
11395sselda 3441 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  z  e.  Y )
114 rpxr 11271 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  RR+  ->  c  e. 
RR* )
115114ad4antlr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  c  e.  RR* )
116 blssm 21211 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( *Met `  Y )  /\  z  e.  Y  /\  c  e.  RR* )  ->  ( z ( ball `  N ) c ) 
C_  Y )
117112, 113, 115, 116syl3anc 1230 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  (
z ( ball `  N
) c )  C_  Y )
118117ralrimiva 2817 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
119 iunss 4311 . . . . . . . . . . . . . 14  |-  ( U_ z  e.  ran  f ( z ( ball `  N
) c )  C_  Y 
<-> 
A. z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
120118, 119sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
121 iunin1 4335 . . . . . . . . . . . . . . 15  |-  U_ y  e.  v  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =  (
U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )
122 simplrr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) )
12355cbviunv 4309 . . . . . . . . . . . . . . . . 17  |-  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) )  =  U_ y  e.  v  (
y ( ball `  M
) ( c  / 
2 ) )
124122, 123syl6sseq 3487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ y  e.  v  ( y
( ball `  M )
( c  /  2
) ) )
125 dfss1 3643 . . . . . . . . . . . . . . . 16  |-  ( Y 
C_  U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  <-> 
( U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  Y )
126124, 125sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ( U_ y  e.  v  ( y
( ball `  M )
( c  /  2
) )  i^i  Y
)  =  Y )
127121, 126syl5eq 2455 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  =  Y )
128 0ss 3767 . . . . . . . . . . . . . . . . . . 19  |-  (/)  C_  U_ z  e.  ran  f ( z ( ball `  N
) c )
129 sseq1 3462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c )  <->  (/)  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
130128, 129mpbiri 233 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
131130a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
132 simpr3 1005 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) )
13356neeq1d 2680 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) ) )
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  x  =  y )
13555imaeq2d 5156 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) )  =  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) ) )
136134, 135eleq12d 2484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
x  e.  ( `' f " ( x ( ball `  M
) ( c  / 
2 ) ) )  <-> 
y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
137133, 136imbi12d 318 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  (
( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) )  <->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) ) ) )
138137rspccva 3158 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  y  e.  v )  ->  (
( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) ) ) )
139132, 138sylan 469 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) ) )
14015ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  M  e.  ( *Met `  X
) )
141 cnvimass 5176 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) ) 
C_  dom  f
14249simplbi 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
143142ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  v  C_  X )
144143adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  v  C_  X
)
14599, 144sstrd 3451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  C_  X )
146141, 145syl5ss 3452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  C_  X )
147146sselda 3441 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  y  e.  X )
148 simp-4r 769 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR+ )
149148rpred 11303 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR )
150 elpreima 5984 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  dom  f  -> 
( y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  dom  f  /\  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
151150simplbda 622 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  Fn  dom  f  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )
15297, 151sylan 469 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )
153 blhalf 21198 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
c  e.  RR  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( c  /  2
) )  C_  (
( f `  y
) ( ball `  M
) c ) )
154140, 147, 149, 152, 153syl22anc 1231 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( c  /  2
) )  C_  (
( f `  y
) ( ball `  M
) c ) )
155 ssrin 3663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y ( ball `  M
) ( c  / 
2 ) )  C_  ( ( f `  y ) ( ball `  M ) c )  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
156154, 155syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
157141sseli 3437 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  -> 
y  e.  dom  f
)
158 ffvelrn 6006 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f : dom  f --> Y  /\  y  e.  dom  f )  ->  (
f `  y )  e.  Y )
15993, 157, 158syl2an 475 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  Y
)
160 simp-5r 771 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  Y  C_  X
)
161160, 22sylib 196 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( X  i^i  Y )  =  Y )
162159, 161eleqtrrd 2493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( X  i^i  Y ) )
163114ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR* )
1641blres 21224 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  ( *Met `  X )  /\  ( f `  y )  e.  ( X  i^i  Y )  /\  c  e.  RR* )  ->  ( ( f `
 y ) (
ball `  N )
c )  =  ( ( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
165140, 162, 163, 164syl3anc 1230 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
f `  y )
( ball `  N )
c )  =  ( ( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
166156, 165sseqtr4d 3478 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( f `  y
) ( ball `  N
) c ) )
167 fnfvelrn 6005 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  Fn  dom  f  /\  y  e.  dom  f )  ->  (
f `  y )  e.  ran  f )
16897, 157, 167syl2an 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ran  f )
169 oveq1 6284 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( f `  y )  ->  (
z ( ball `  N
) c )  =  ( ( f `  y ) ( ball `  N ) c ) )
170169ssiun2s 4314 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f `  y )  e.  ran  f  -> 
( ( f `  y ) ( ball `  N ) c ) 
C_  U_ z  e.  ran  f ( z (
ball `  N )
c ) )
171168, 170syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
f `  y )
( ball `  N )
c )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
172166, 171sstrd 3451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
173172adantlr 713 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  /\  y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  C_  U_ z  e.  ran  f
( z ( ball `  N ) c ) )
174173ex 432 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
175139, 174syld 42 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
176131, 175pm2.61dne 2720 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
177176ralrimiva 2817 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
178 iunss 4311 . . . . . . . . . . . . . . 15  |-  ( U_ y  e.  v  (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  C_  U_ z  e.  ran  f
( z ( ball `  N ) c )  <->  A. y  e.  v 
( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
179177, 178sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
180127, 179eqsstr3d 3476 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
181120, 180eqssd 3458 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ z  e.  ran  f ( z (
ball `  N )
c )  =  Y )
182109, 181syl5eq 2455 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ x  e.  ran  f ( x (
ball `  N )
c )  =  Y )
183 iuneq1 4284 . . . . . . . . . . . . 13  |-  ( w  =  ran  f  ->  U_ x  e.  w  ( x ( ball `  N ) c )  =  U_ x  e. 
ran  f ( x ( ball `  N
) c ) )
184183eqeq1d 2404 . . . . . . . . . . . 12  |-  ( w  =  ran  f  -> 
( U_ x  e.  w  ( x ( ball `  N ) c )  =  Y  <->  U_ x  e. 
ran  f ( x ( ball `  N
) c )  =  Y ) )
185184rspcev 3159 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e. 
ran  f ( x ( ball `  N
) c )  =  Y )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y )
186107, 182, 185syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y )
187186ex 432 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( dom  f  C_  v  /\  f : dom  f
--> Y  /\  A. x  e.  v  ( (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  x  e.  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
18892, 187syld 42 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
189188exlimdv 1745 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  ( E. f ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
19069, 189mpd 15 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y )
191190rexlimdvaa 2896 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) Y 
C_  U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
19248, 191syld 42 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
193192ralrimdva 2821 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
194 istotbnd3 31529 . . . . 5  |-  ( N  e.  ( TotBnd `  Y
)  <->  ( N  e.  ( Met `  Y
)  /\  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
195194baib 904 . . . 4  |-  ( N  e.  ( Met `  Y
)  ->  ( N  e.  ( TotBnd `  Y )  <->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
1963, 195syl 17 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
197193, 196sylibrd 234 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  N  e.  ( TotBnd `  Y )
) )
19840, 197impbid 191 1  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   {crab 2757    i^i cin 3412    C_ wss 3413   (/)c0 3737   ~Pcpw 3954   U_ciun 4270    X. cxp 4820   `'ccnv 4821   dom cdm 4822   ran crn 4823    |` cres 4824   "cima 4825    Fn wfn 5563   -->wf 5564   ` cfv 5568  (class class class)co 6277   Fincfn 7553   RRcr 9520   RR*cxr 9656    / cdiv 10246   2c2 10625   RR+crp 11264   *Metcxmt 18721   Metcme 18722   ballcbl 18723   TotBndctotbnd 31524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-2 10634  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-totbnd 31526
This theorem is referenced by:  sstotbnd  31533  sstotbnd3  31534
  Copyright terms: Public domain W3C validator