Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd2 Structured version   Unicode version

Theorem sstotbnd2 28582
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2  |-  N  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
sstotbnd2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
Distinct variable groups:    v, d, x, M    X, d, v, x    N, d, v, x    Y, d, v, x

Proof of Theorem sstotbnd2
Dummy variables  c 
f  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . . 5  |-  N  =  ( M  |`  ( Y  X.  Y ) )
2 metres2 19838 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( M  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
31, 2syl5eqel 2525 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  N  e.  ( Met `  Y
) )
4 istotbnd3 28579 . . . . 5  |-  ( N  e.  ( TotBnd `  Y
)  <->  ( N  e.  ( Met `  Y
)  /\  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
54baib 891 . . . 4  |-  ( N  e.  ( Met `  Y
)  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
63, 5syl 16 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
7 simpllr 753 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  Y  C_  X )
8 sspwb 4538 . . . . . . . . . 10  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
97, 8sylib 196 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  ~P Y  C_  ~P X
)
10 ssrin 3572 . . . . . . . . 9  |-  ( ~P Y  C_  ~P X  ->  ( ~P Y  i^i  Fin )  C_  ( ~P X  i^i  Fin ) )
119, 10syl 16 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
( ~P Y  i^i  Fin )  C_  ( ~P X  i^i  Fin ) )
12 simprl 750 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
v  e.  ( ~P Y  i^i  Fin )
)
1311, 12sseldd 3354 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
v  e.  ( ~P X  i^i  Fin )
)
14 simprr 751 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  U_ x  e.  v 
( x ( ball `  N ) d )  =  Y )
15 metxmet 19809 . . . . . . . . . . . . . 14  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
1615ad4antr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  M  e.  ( *Met `  X ) )
17 elfpw 7609 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( ~P Y  i^i  Fin )  <->  ( v  C_  Y  /\  v  e. 
Fin ) )
1817simplbi 457 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( ~P Y  i^i  Fin )  ->  v  C_  Y )
1918adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  v  C_  Y )
2019sselda 3353 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  Y )
21 simp-4r 761 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  Y  C_  X )
22 dfss1 3552 . . . . . . . . . . . . . . 15  |-  ( Y 
C_  X  <->  ( X  i^i  Y )  =  Y )
2321, 22sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  ( X  i^i  Y )  =  Y )
2420, 23eleqtrrd 2518 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  ( X  i^i  Y
) )
25 simpllr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  d  e.  RR+ )
2625rpxrd 11024 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  d  e.  RR* )
271blres 19906 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  ( X  i^i  Y )  /\  d  e.  RR* )  ->  ( x (
ball `  N )
d )  =  ( ( x ( ball `  M ) d )  i^i  Y ) )
2816, 24, 26, 27syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  (
x ( ball `  N
) d )  =  ( ( x (
ball `  M )
d )  i^i  Y
) )
29 inss1 3567 . . . . . . . . . . . 12  |-  ( ( x ( ball `  M
) d )  i^i 
Y )  C_  (
x ( ball `  M
) d )
3028, 29syl6eqss 3403 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  (
x ( ball `  N
) d )  C_  ( x ( ball `  M ) d ) )
3130ralrimiva 2797 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  N )
d )  C_  (
x ( ball `  M
) d ) )
32 ss2iun 4183 . . . . . . . . . 10  |-  ( A. x  e.  v  (
x ( ball `  N
) d )  C_  ( x ( ball `  M ) d )  ->  U_ x  e.  v  ( x ( ball `  N ) d ) 
C_  U_ x  e.  v  ( x ( ball `  M ) d ) )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  N )
d )  C_  U_ x  e.  v  ( x
( ball `  M )
d ) )
3433adantrr 711 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  U_ x  e.  v 
( x ( ball `  N ) d ) 
C_  U_ x  e.  v  ( x ( ball `  M ) d ) )
3514, 34eqsstr3d 3388 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  Y  C_  U_ x  e.  v  ( x (
ball `  M )
d ) )
3613, 35jca 529 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3736ex 434 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  d  e.  RR+ )  ->  ( (
v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  N ) d )  =  Y )  -> 
( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) ) )
3837reximdv2 2823 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  d  e.  RR+ )  ->  ( E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  (
x ( ball `  N
) d )  =  Y  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3938ralimdva 2792 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d ) ) )
406, 39sylbid 215 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
41 simpr 458 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  c  e.  RR+ )
4241rphalfcld 11035 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( c  /  2 )  e.  RR+ )
43 oveq2 6098 . . . . . . . . . 10  |-  ( d  =  ( c  / 
2 )  ->  (
x ( ball `  M
) d )  =  ( x ( ball `  M ) ( c  /  2 ) ) )
4443iuneq2d 4194 . . . . . . . . 9  |-  ( d  =  ( c  / 
2 )  ->  U_ x  e.  v  ( x
( ball `  M )
d )  =  U_ x  e.  v  (
x ( ball `  M
) ( c  / 
2 ) ) )
4544sseq2d 3381 . . . . . . . 8  |-  ( d  =  ( c  / 
2 )  ->  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  <->  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4645rexbidv 2734 . . . . . . 7  |-  ( d  =  ( c  / 
2 )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  <->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4746rspcv 3066 . . . . . 6  |-  ( ( c  /  2 )  e.  RR+  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4842, 47syl 16 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
49 elfpw 7609 . . . . . . . . . . 11  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
5049simprbi 461 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
5150ad2antrl 722 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  v  e.  Fin )
52 ssrab2 3434 . . . . . . . . 9  |-  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  C_  v
53 ssfi 7529 . . . . . . . . 9  |-  ( ( v  e.  Fin  /\  { x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  C_  v )  ->  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  e.  Fin )
5451, 52, 53sylancl 657 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  e.  Fin )
55 oveq1 6097 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
x ( ball `  M
) ( c  / 
2 ) )  =  ( y ( ball `  M ) ( c  /  2 ) ) )
5655ineq1d 3548 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
) )
57 incom 3540 . . . . . . . . . . . . . . 15  |-  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =  ( Y  i^i  ( y ( ball `  M
) ( c  / 
2 ) ) )
5856, 57syl6eq 2489 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  ( Y  i^i  (
y ( ball `  M
) ( c  / 
2 ) ) ) )
59 dfin5 3333 . . . . . . . . . . . . . 14  |-  ( Y  i^i  ( y (
ball `  M )
( c  /  2
) ) )  =  { z  e.  Y  |  z  e.  (
y ( ball `  M
) ( c  / 
2 ) ) }
6058, 59syl6eq 2489 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  { z  e.  Y  |  z  e.  (
y ( ball `  M
) ( c  / 
2 ) ) } )
6160neeq1d 2619 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  { z  e.  Y  |  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) }  =/=  (/) ) )
62 rabn0 3654 . . . . . . . . . . . 12  |-  ( { z  e.  Y  | 
z  e.  ( y ( ball `  M
) ( c  / 
2 ) ) }  =/=  (/)  <->  E. z  e.  Y  z  e.  ( y
( ball `  M )
( c  /  2
) ) )
6361, 62syl6bb 261 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
6463elrab 3114 . . . . . . . . . 10  |-  ( y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  <->  ( y  e.  v  /\  E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
6564simprbi 461 . . . . . . . . 9  |-  ( y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  ->  E. z  e.  Y  z  e.  ( y (
ball `  M )
( c  /  2
) ) )
6665rgen 2779 . . . . . . . 8  |-  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) )
67 eleq1 2501 . . . . . . . . 9  |-  ( z  =  ( f `  y )  ->  (
z  e.  ( y ( ball `  M
) ( c  / 
2 ) )  <->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
6867ac6sfi 7552 . . . . . . . 8  |-  ( ( { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  e.  Fin  /\  A. y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) )  ->  E. f
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
6954, 66, 68sylancl 657 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  E. f
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
70 fdm 5560 . . . . . . . . . . . . . 14  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  ->  dom  f  =  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } )
7170ad2antrl 722 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  dom  f  =  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } )
7271, 52syl6eqss 3403 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  dom  f  C_  v )
73 simprl 750 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y )
7471feq2d 5544 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f : dom  f --> Y  <->  f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y ) )
7573, 74mpbird 232 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  f : dom  f --> Y )
76 simprr 751 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  (
f `  y )  e.  ( y ( ball `  M ) ( c  /  2 ) ) )
77 ffn 5556 . . . . . . . . . . . . . . . . . 18  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
f  Fn  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } )
78 elpreima 5820 . . . . . . . . . . . . . . . . . 18  |-  ( f  Fn  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  ->  ( y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
7977, 78syl 16 . . . . . . . . . . . . . . . . 17  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
( y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
8079baibd 895 . . . . . . . . . . . . . . . 16  |-  ( ( f : { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } --> Y  /\  y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } )  ->  ( y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) )  <->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
8180ralbidva 2729 . . . . . . . . . . . . . . 15  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
( A. y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  <->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  (
f `  y )  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
8281ad2antrl 722 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <->  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
8376, 82mpbird 232 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) ) )
84 id 22 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  y  =  x )
85 oveq1 6097 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
y ( ball `  M
) ( c  / 
2 ) )  =  ( x ( ball `  M ) ( c  /  2 ) ) )
8685imaeq2d 5166 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  =  ( `' f
" ( x (
ball `  M )
( c  /  2
) ) ) )
8784, 86eleq12d 2509 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
x  e.  ( `' f " ( x ( ball `  M
) ( c  / 
2 ) ) ) ) )
8887ralrab2 3122 . . . . . . . . . . . . 13  |-  ( A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <->  A. x  e.  v 
( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) )
8983, 88sylib 196 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. x  e.  v  ( (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  x  e.  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) ) ) )
9072, 75, 893jca 1163 . . . . . . . . . . 11  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )
9190ex 434 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) ) )
9251, 91syl 16 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) ) )
93 simpr2 990 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f : dom  f
--> Y )
94 frn 5562 . . . . . . . . . . . . 13  |-  ( f : dom  f --> Y  ->  ran  f  C_  Y )
9593, 94syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  C_  Y )
96 ffn 5556 . . . . . . . . . . . . . . 15  |-  ( f : dom  f --> Y  ->  f  Fn  dom  f )
9793, 96syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f  Fn  dom  f )
9851adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  v  e.  Fin )
99 simpr1 989 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  C_  v )
100 ssfi 7529 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  Fin  /\  dom  f  C_  v )  ->  dom  f  e.  Fin )
10198, 99, 100syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  e.  Fin )
102 fnfi 7585 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  dom  f  /\  dom  f  e.  Fin )  ->  f  e.  Fin )
10397, 101, 102syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f  e.  Fin )
104 rnfi 7592 . . . . . . . . . . . . 13  |-  ( f  e.  Fin  ->  ran  f  e.  Fin )
105103, 104syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  e.  Fin )
106 elfpw 7609 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P Y  i^i  Fin )  <->  ( ran  f  C_  Y  /\  ran  f  e.  Fin ) )
10795, 105, 106sylanbrc 659 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  e.  ( ~P Y  i^i  Fin ) )
108 oveq1 6097 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x ( ball `  N
) c )  =  ( z ( ball `  N ) c ) )
109108cbviunv 4206 . . . . . . . . . . . 12  |-  U_ x  e.  ran  f ( x ( ball `  N
) c )  = 
U_ z  e.  ran  f ( z (
ball `  N )
c )
1103ad4antr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  N  e.  ( Met `  Y
) )
111 metxmet 19809 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( Met `  Y
)  ->  N  e.  ( *Met `  Y
) )
112110, 111syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  N  e.  ( *Met `  Y ) )
11395sselda 3353 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  z  e.  Y )
114 rpxr 10994 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  RR+  ->  c  e. 
RR* )
115114ad4antlr 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  c  e.  RR* )
116 blssm 19893 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( *Met `  Y )  /\  z  e.  Y  /\  c  e.  RR* )  ->  ( z ( ball `  N ) c ) 
C_  Y )
117112, 113, 115, 116syl3anc 1213 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  (
z ( ball `  N
) c )  C_  Y )
118117ralrimiva 2797 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
119 iunss 4208 . . . . . . . . . . . . . 14  |-  ( U_ z  e.  ran  f ( z ( ball `  N
) c )  C_  Y 
<-> 
A. z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
120118, 119sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
121 iunin1 4232 . . . . . . . . . . . . . . 15  |-  U_ y  e.  v  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =  (
U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )
122 simplrr 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) )
12355cbviunv 4206 . . . . . . . . . . . . . . . . 17  |-  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) )  =  U_ y  e.  v  (
y ( ball `  M
) ( c  / 
2 ) )
124122, 123syl6sseq 3399 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ y  e.  v  ( y
( ball `  M )
( c  /  2
) ) )
125 dfss1 3552 . . . . . . . . . . . . . . . 16  |-  ( Y 
C_  U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  <-> 
( U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  Y )
126124, 125sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ( U_ y  e.  v  ( y
( ball `  M )
( c  /  2
) )  i^i  Y
)  =  Y )
127121, 126syl5eq 2485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  =  Y )
128 0ss 3663 . . . . . . . . . . . . . . . . . . 19  |-  (/)  C_  U_ z  e.  ran  f ( z ( ball `  N
) c )
129 sseq1 3374 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c )  <->  (/)  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
130128, 129mpbiri 233 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
131130a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
132 simpr3 991 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) )
13356neeq1d 2619 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) ) )
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  x  =  y )
13555imaeq2d 5166 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) )  =  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) ) )
136134, 135eleq12d 2509 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
x  e.  ( `' f " ( x ( ball `  M
) ( c  / 
2 ) ) )  <-> 
y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
137133, 136imbi12d 320 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  (
( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) )  <->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) ) ) )
138137rspccva 3069 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  y  e.  v )  ->  (
( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) ) ) )
139132, 138sylan 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) ) )
14015ad2antrr 720 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  M  e.  ( *Met `  X
) )
141140ad3antrrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  M  e.  ( *Met `  X
) )
142 cnvimass 5186 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) ) 
C_  dom  f
14349simplbi 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
144143ad2antrl 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  v  C_  X )
145144adantr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  v  C_  X
)
14699, 145sstrd 3363 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  C_  X )
147142, 146syl5ss 3364 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  C_  X )
148147sselda 3353 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  y  e.  X )
149 simp-4r 761 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR+ )
150149rpred 11023 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR )
151 elpreima 5820 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  dom  f  -> 
( y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  dom  f  /\  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
152151simplbda 621 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  Fn  dom  f  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )
15397, 152sylan 468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )
154 blhalf 19880 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
c  e.  RR  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( c  /  2
) )  C_  (
( f `  y
) ( ball `  M
) c ) )
155141, 148, 150, 153, 154syl22anc 1214 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( c  /  2
) )  C_  (
( f `  y
) ( ball `  M
) c ) )
156 ssrin 3572 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y ( ball `  M
) ( c  / 
2 ) )  C_  ( ( f `  y ) ( ball `  M ) c )  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
157155, 156syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
158142sseli 3349 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  -> 
y  e.  dom  f
)
159 ffvelrn 5838 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f : dom  f --> Y  /\  y  e.  dom  f )  ->  (
f `  y )  e.  Y )
16093, 158, 159syl2an 474 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  Y
)
161 simp-5r 763 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  Y  C_  X
)
162161, 22sylib 196 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( X  i^i  Y )  =  Y )
163160, 162eleqtrrd 2518 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( X  i^i  Y ) )
164114ad4antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR* )
1651blres 19906 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  ( *Met `  X )  /\  ( f `  y )  e.  ( X  i^i  Y )  /\  c  e.  RR* )  ->  ( ( f `
 y ) (
ball `  N )
c )  =  ( ( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
166141, 163, 164, 165syl3anc 1213 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
f `  y )
( ball `  N )
c )  =  ( ( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
167157, 166sseqtr4d 3390 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( f `  y
) ( ball `  N
) c ) )
168 fnfvelrn 5837 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  Fn  dom  f  /\  y  e.  dom  f )  ->  (
f `  y )  e.  ran  f )
16997, 158, 168syl2an 474 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ran  f )
170 oveq1 6097 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( f `  y )  ->  (
z ( ball `  N
) c )  =  ( ( f `  y ) ( ball `  N ) c ) )
171170ssiun2s 4211 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f `  y )  e.  ran  f  -> 
( ( f `  y ) ( ball `  N ) c ) 
C_  U_ z  e.  ran  f ( z (
ball `  N )
c ) )
172169, 171syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
f `  y )
( ball `  N )
c )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
173167, 172sstrd 3363 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
174173adantlr 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  /\  y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  C_  U_ z  e.  ran  f
( z ( ball `  N ) c ) )
175174ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
176139, 175syld 44 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
177131, 176pm2.61dne 2686 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
178177ralrimiva 2797 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
179 iunss 4208 . . . . . . . . . . . . . . 15  |-  ( U_ y  e.  v  (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  C_  U_ z  e.  ran  f
( z ( ball `  N ) c )  <->  A. y  e.  v 
( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
180178, 179sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
181127, 180eqsstr3d 3388 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
182120, 181eqssd 3370 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ z  e.  ran  f ( z (
ball `  N )
c )  =  Y )
183109, 182syl5eq 2485 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ x  e.  ran  f ( x (
ball `  N )
c )  =  Y )
184 iuneq1 4181 . . . . . . . . . . . . 13  |-  ( w  =  ran  f  ->  U_ x  e.  w  ( x ( ball `  N ) c )  =  U_ x  e. 
ran  f ( x ( ball `  N
) c ) )
185184eqeq1d 2449 . . . . . . . . . . . 12  |-  ( w  =  ran  f  -> 
( U_ x  e.  w  ( x ( ball `  N ) c )  =  Y  <->  U_ x  e. 
ran  f ( x ( ball `  N
) c )  =  Y ) )
186185rspcev 3070 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e. 
ran  f ( x ( ball `  N
) c )  =  Y )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y )
187107, 183, 186syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y )
188187ex 434 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( dom  f  C_  v  /\  f : dom  f
--> Y  /\  A. x  e.  v  ( (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  x  e.  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
18992, 188syld 44 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
190189exlimdv 1695 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  ( E. f ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
19169, 190mpd 15 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y )
192191rexlimdvaa 2840 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) Y 
C_  U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
19348, 192syld 44 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
194193ralrimdva 2804 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
195 istotbnd3 28579 . . . . 5  |-  ( N  e.  ( TotBnd `  Y
)  <->  ( N  e.  ( Met `  Y
)  /\  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
196195baib 891 . . . 4  |-  ( N  e.  ( Met `  Y
)  ->  ( N  e.  ( TotBnd `  Y )  <->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
1973, 196syl 16 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
198194, 197sylibrd 234 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  N  e.  ( TotBnd `  Y )
) )
19940, 198impbid 191 1  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   U_ciun 4168    X. cxp 4834   `'ccnv 4835   dom cdm 4836   ran crn 4837    |` cres 4838   "cima 4839    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090   Fincfn 7306   RRcr 9277   RR*cxr 9413    / cdiv 9989   2c2 10367   RR+crp 10987   *Metcxmt 17701   Metcme 17702   ballcbl 17703   TotBndctotbnd 28574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-2 10376  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-totbnd 28576
This theorem is referenced by:  sstotbnd  28583  sstotbnd3  28584
  Copyright terms: Public domain W3C validator