Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd2 Structured version   Visualization version   Unicode version

Theorem sstotbnd2 32118
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2  |-  N  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
sstotbnd2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
Distinct variable groups:    v, d, x, M    X, d, v, x    N, d, v, x    Y, d, v, x

Proof of Theorem sstotbnd2
Dummy variables  c 
f  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . . 5  |-  N  =  ( M  |`  ( Y  X.  Y ) )
2 metres2 21390 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( M  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
31, 2syl5eqel 2535 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  N  e.  ( Met `  Y
) )
4 istotbnd3 32115 . . . . 5  |-  ( N  e.  ( TotBnd `  Y
)  <->  ( N  e.  ( Met `  Y
)  /\  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
54baib 915 . . . 4  |-  ( N  e.  ( Met `  Y
)  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
63, 5syl 17 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y ) )
7 simpllr 770 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  Y  C_  X )
8 sspwb 4652 . . . . . . . . . 10  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
97, 8sylib 200 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  ~P Y  C_  ~P X
)
10 ssrin 3659 . . . . . . . . 9  |-  ( ~P Y  C_  ~P X  ->  ( ~P Y  i^i  Fin )  C_  ( ~P X  i^i  Fin ) )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
( ~P Y  i^i  Fin )  C_  ( ~P X  i^i  Fin ) )
12 simprl 765 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
v  e.  ( ~P Y  i^i  Fin )
)
1311, 12sseldd 3435 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
v  e.  ( ~P X  i^i  Fin )
)
14 simprr 767 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  U_ x  e.  v 
( x ( ball `  N ) d )  =  Y )
15 metxmet 21361 . . . . . . . . . . . . . 14  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
1615ad4antr 739 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  M  e.  ( *Met `  X ) )
17 elfpw 7881 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( ~P Y  i^i  Fin )  <->  ( v  C_  Y  /\  v  e. 
Fin ) )
1817simplbi 462 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( ~P Y  i^i  Fin )  ->  v  C_  Y )
1918adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  v  C_  Y )
2019sselda 3434 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  Y )
21 simp-4r 778 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  Y  C_  X )
22 dfss1 3639 . . . . . . . . . . . . . . 15  |-  ( Y 
C_  X  <->  ( X  i^i  Y )  =  Y )
2321, 22sylib 200 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  ( X  i^i  Y )  =  Y )
2420, 23eleqtrrd 2534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  ( X  i^i  Y
) )
25 simpllr 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  d  e.  RR+ )
2625rpxrd 11349 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  d  e.  RR* )
271blres 21458 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  ( X  i^i  Y )  /\  d  e.  RR* )  ->  ( x (
ball `  N )
d )  =  ( ( x ( ball `  M ) d )  i^i  Y ) )
2816, 24, 26, 27syl3anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  (
x ( ball `  N
) d )  =  ( ( x (
ball `  M )
d )  i^i  Y
) )
29 inss1 3654 . . . . . . . . . . . 12  |-  ( ( x ( ball `  M
) d )  i^i 
Y )  C_  (
x ( ball `  M
) d )
3028, 29syl6eqss 3484 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  /\  x  e.  v )  ->  (
x ( ball `  N
) d )  C_  ( x ( ball `  M ) d ) )
3130ralrimiva 2804 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  N )
d )  C_  (
x ( ball `  M
) d ) )
32 ss2iun 4297 . . . . . . . . . 10  |-  ( A. x  e.  v  (
x ( ball `  N
) d )  C_  ( x ( ball `  M ) d )  ->  U_ x  e.  v  ( x ( ball `  N ) d ) 
C_  U_ x  e.  v  ( x ( ball `  M ) d ) )
3331, 32syl 17 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  v  e.  ( ~P Y  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  N )
d )  C_  U_ x  e.  v  ( x
( ball `  M )
d ) )
3433adantrr 724 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  U_ x  e.  v 
( x ( ball `  N ) d ) 
C_  U_ x  e.  v  ( x ( ball `  M ) d ) )
3514, 34eqsstr3d 3469 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  ->  Y  C_  U_ x  e.  v  ( x (
ball `  M )
d ) )
3613, 35jca 535 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  d  e.  RR+ )  /\  ( v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  (
x ( ball `  N
) d )  =  Y ) )  -> 
( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3736ex 436 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  d  e.  RR+ )  ->  ( (
v  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  N ) d )  =  Y )  -> 
( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) ) )
3837reximdv2 2860 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  d  e.  RR+ )  ->  ( E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  (
x ( ball `  N
) d )  =  Y  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
3938ralimdva 2798 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P Y  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
d )  =  Y  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d ) ) )
406, 39sylbid 219 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
41 simpr 463 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  c  e.  RR+ )
4241rphalfcld 11360 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( c  /  2 )  e.  RR+ )
43 oveq2 6303 . . . . . . . . . 10  |-  ( d  =  ( c  / 
2 )  ->  (
x ( ball `  M
) d )  =  ( x ( ball `  M ) ( c  /  2 ) ) )
4443iuneq2d 4308 . . . . . . . . 9  |-  ( d  =  ( c  / 
2 )  ->  U_ x  e.  v  ( x
( ball `  M )
d )  =  U_ x  e.  v  (
x ( ball `  M
) ( c  / 
2 ) ) )
4544sseq2d 3462 . . . . . . . 8  |-  ( d  =  ( c  / 
2 )  ->  ( Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  <->  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4645rexbidv 2903 . . . . . . 7  |-  ( d  =  ( c  / 
2 )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x (
ball `  M )
d )  <->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4746rspcv 3148 . . . . . 6  |-  ( ( c  /  2 )  e.  RR+  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
4842, 47syl 17 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )
49 elfpw 7881 . . . . . . . . . . 11  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
5049simprbi 466 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
5150ad2antrl 735 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  v  e.  Fin )
52 ssrab2 3516 . . . . . . . . 9  |-  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  C_  v
53 ssfi 7797 . . . . . . . . 9  |-  ( ( v  e.  Fin  /\  { x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  C_  v )  ->  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  e.  Fin )
5451, 52, 53sylancl 669 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  e.  Fin )
55 oveq1 6302 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
x ( ball `  M
) ( c  / 
2 ) )  =  ( y ( ball `  M ) ( c  /  2 ) ) )
5655ineq1d 3635 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
) )
57 incom 3627 . . . . . . . . . . . . . . 15  |-  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =  ( Y  i^i  ( y ( ball `  M
) ( c  / 
2 ) ) )
5856, 57syl6eq 2503 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  ( Y  i^i  (
y ( ball `  M
) ( c  / 
2 ) ) ) )
59 dfin5 3414 . . . . . . . . . . . . . 14  |-  ( Y  i^i  ( y (
ball `  M )
( c  /  2
) ) )  =  { z  e.  Y  |  z  e.  (
y ( ball `  M
) ( c  / 
2 ) ) }
6058, 59syl6eq 2503 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  { z  e.  Y  |  z  e.  (
y ( ball `  M
) ( c  / 
2 ) ) } )
6160neeq1d 2685 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  { z  e.  Y  |  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) }  =/=  (/) ) )
62 rabn0 3754 . . . . . . . . . . . 12  |-  ( { z  e.  Y  | 
z  e.  ( y ( ball `  M
) ( c  / 
2 ) ) }  =/=  (/)  <->  E. z  e.  Y  z  e.  ( y
( ball `  M )
( c  /  2
) ) )
6361, 62syl6bb 265 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
6463elrab 3198 . . . . . . . . . 10  |-  ( y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  <->  ( y  e.  v  /\  E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
6564simprbi 466 . . . . . . . . 9  |-  ( y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  ->  E. z  e.  Y  z  e.  ( y (
ball `  M )
( c  /  2
) ) )
6665rgen 2749 . . . . . . . 8  |-  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) )
67 eleq1 2519 . . . . . . . . 9  |-  ( z  =  ( f `  y )  ->  (
z  e.  ( y ( ball `  M
) ( c  / 
2 ) )  <->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
6867ac6sfi 7820 . . . . . . . 8  |-  ( ( { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  e.  Fin  /\  A. y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } E. z  e.  Y  z  e.  ( y ( ball `  M ) ( c  /  2 ) ) )  ->  E. f
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
6954, 66, 68sylancl 669 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  E. f
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
70 fdm 5738 . . . . . . . . . . . . . 14  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  ->  dom  f  =  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } )
7170ad2antrl 735 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  dom  f  =  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } )
7271, 52syl6eqss 3484 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  dom  f  C_  v )
73 simprl 765 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y )
7471feq2d 5720 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f : dom  f --> Y  <->  f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y ) )
7573, 74mpbird 236 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  f : dom  f --> Y )
76 simprr 767 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  (
f `  y )  e.  ( y ( ball `  M ) ( c  /  2 ) ) )
77 ffn 5733 . . . . . . . . . . . . . . . . . 18  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
f  Fn  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } )
78 elpreima 6007 . . . . . . . . . . . . . . . . . 18  |-  ( f  Fn  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  ->  ( y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
7977, 78syl 17 . . . . . . . . . . . . . . . . 17  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
( y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) }  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
8079baibd 921 . . . . . . . . . . . . . . . 16  |-  ( ( f : { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } --> Y  /\  y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } )  ->  ( y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) )  <->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
8180ralbidva 2826 . . . . . . . . . . . . . . 15  |-  ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  -> 
( A. y  e. 
{ x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  <->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) }  (
f `  y )  e.  ( y ( ball `  M ) ( c  /  2 ) ) ) )
8281ad2antrl 735 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <->  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )
8376, 82mpbird 236 . . . . . . . . . . . . 13  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. y  e.  { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) ) )
84 id 22 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  y  =  x )
85 oveq1 6302 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
y ( ball `  M
) ( c  / 
2 ) )  =  ( x ( ball `  M ) ( c  /  2 ) ) )
8685imaeq2d 5171 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  =  ( `' f
" ( x (
ball `  M )
( c  /  2
) ) ) )
8784, 86eleq12d 2525 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
x  e.  ( `' f " ( x ( ball `  M
) ( c  / 
2 ) ) ) ) )
8887ralrab2 3206 . . . . . . . . . . . . 13  |-  ( A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) } y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <->  A. x  e.  v 
( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) )
8983, 88sylib 200 . . . . . . . . . . . 12  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  A. x  e.  v  ( (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  x  e.  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) ) ) )
9072, 75, 893jca 1189 . . . . . . . . . . 11  |-  ( ( v  e.  Fin  /\  ( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )
9190ex 436 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) ) )
9251, 91syl 17 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) ) )
93 simpr2 1016 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f : dom  f
--> Y )
94 frn 5740 . . . . . . . . . . . . 13  |-  ( f : dom  f --> Y  ->  ran  f  C_  Y )
9593, 94syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  C_  Y )
96 ffn 5733 . . . . . . . . . . . . . . 15  |-  ( f : dom  f --> Y  ->  f  Fn  dom  f )
9793, 96syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f  Fn  dom  f )
9851adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  v  e.  Fin )
99 simpr1 1015 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  C_  v )
100 ssfi 7797 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  Fin  /\  dom  f  C_  v )  ->  dom  f  e.  Fin )
10198, 99, 100syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  e.  Fin )
102 fnfi 7854 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  dom  f  /\  dom  f  e.  Fin )  ->  f  e.  Fin )
10397, 101, 102syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  f  e.  Fin )
104 rnfi 7862 . . . . . . . . . . . . 13  |-  ( f  e.  Fin  ->  ran  f  e.  Fin )
105103, 104syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  e.  Fin )
106 elfpw 7881 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P Y  i^i  Fin )  <->  ( ran  f  C_  Y  /\  ran  f  e.  Fin ) )
10795, 105, 106sylanbrc 671 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ran  f  e.  ( ~P Y  i^i  Fin ) )
108 oveq1 6302 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x ( ball `  N
) c )  =  ( z ( ball `  N ) c ) )
109108cbviunv 4320 . . . . . . . . . . . 12  |-  U_ x  e.  ran  f ( x ( ball `  N
) c )  = 
U_ z  e.  ran  f ( z (
ball `  N )
c )
1103ad4antr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  N  e.  ( Met `  Y
) )
111 metxmet 21361 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( Met `  Y
)  ->  N  e.  ( *Met `  Y
) )
112110, 111syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  N  e.  ( *Met `  Y ) )
11395sselda 3434 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  z  e.  Y )
114 rpxr 11316 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  RR+  ->  c  e. 
RR* )
115114ad4antlr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  c  e.  RR* )
116 blssm 21445 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( *Met `  Y )  /\  z  e.  Y  /\  c  e.  RR* )  ->  ( z ( ball `  N ) c ) 
C_  Y )
117112, 113, 115, 116syl3anc 1269 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  z  e.  ran  f )  ->  (
z ( ball `  N
) c )  C_  Y )
118117ralrimiva 2804 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
119 iunss 4322 . . . . . . . . . . . . . 14  |-  ( U_ z  e.  ran  f ( z ( ball `  N
) c )  C_  Y 
<-> 
A. z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
120118, 119sylibr 216 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ z  e.  ran  f ( z (
ball `  N )
c )  C_  Y
)
121 iunin1 4346 . . . . . . . . . . . . . . 15  |-  U_ y  e.  v  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =  (
U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )
122 simplrr 772 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) )
12355cbviunv 4320 . . . . . . . . . . . . . . . . 17  |-  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) )  =  U_ y  e.  v  (
y ( ball `  M
) ( c  / 
2 ) )
124122, 123syl6sseq 3480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ y  e.  v  ( y
( ball `  M )
( c  /  2
) ) )
125 dfss1 3639 . . . . . . . . . . . . . . . 16  |-  ( Y 
C_  U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  <-> 
( U_ y  e.  v  ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  Y )
126124, 125sylib 200 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ( U_ y  e.  v  ( y
( ball `  M )
( c  /  2
) )  i^i  Y
)  =  Y )
127121, 126syl5eq 2499 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  =  Y )
128 0ss 3765 . . . . . . . . . . . . . . . . . . 19  |-  (/)  C_  U_ z  e.  ran  f ( z ( ball `  N
) c )
129 sseq1 3455 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c )  <->  (/)  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
130128, 129mpbiri 237 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
131130a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
132 simpr3 1017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) )
13356neeq1d 2685 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  <->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) ) )
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  x  =  y )
13555imaeq2d 5171 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) )  =  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) ) )
136134, 135eleq12d 2525 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
x  e.  ( `' f " ( x ( ball `  M
) ( c  / 
2 ) ) )  <-> 
y  e.  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
137133, 136imbi12d 322 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  (
( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) )  <->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) ) ) )
138137rspccva 3151 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  y  e.  v )  ->  (
( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) ) ) )
139132, 138sylan 474 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) ) )
14015ad5antr 741 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  M  e.  ( *Met `  X
) )
141 cnvimass 5191 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( `' f " ( y ( ball `  M
) ( c  / 
2 ) ) ) 
C_  dom  f
14249simplbi 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
143142ad2antrl 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  v  C_  X )
144143adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  v  C_  X
)
14599, 144sstrd 3444 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  dom  f  C_  X )
146141, 145syl5ss 3445 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  C_  X )
147146sselda 3434 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  y  e.  X )
148 simp-4r 778 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR+ )
149148rpred 11348 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR )
150 elpreima 6007 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  dom  f  -> 
( y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) )  <-> 
( y  e.  dom  f  /\  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) ) )
151150simplbda 630 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  Fn  dom  f  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )
15297, 151sylan 474 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )
153 blhalf 21432 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
c  e.  RR  /\  ( f `  y
)  e.  ( y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( c  /  2
) )  C_  (
( f `  y
) ( ball `  M
) c ) )
154140, 147, 149, 152, 153syl22anc 1270 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( y
( ball `  M )
( c  /  2
) )  C_  (
( f `  y
) ( ball `  M
) c ) )
155 ssrin 3659 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y ( ball `  M
) ( c  / 
2 ) )  C_  ( ( f `  y ) ( ball `  M ) c )  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
156154, 155syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
157141sseli 3430 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ( `' f
" ( y (
ball `  M )
( c  /  2
) ) )  -> 
y  e.  dom  f
)
158 ffvelrn 6025 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f : dom  f --> Y  /\  y  e.  dom  f )  ->  (
f `  y )  e.  Y )
15993, 157, 158syl2an 480 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  Y
)
160 simp-5r 780 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  Y  C_  X
)
161160, 22sylib 200 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( X  i^i  Y )  =  Y )
162159, 161eleqtrrd 2534 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ( X  i^i  Y ) )
163114ad4antlr 740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  c  e.  RR* )
1641blres 21458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  ( *Met `  X )  /\  ( f `  y )  e.  ( X  i^i  Y )  /\  c  e.  RR* )  ->  ( ( f `
 y ) (
ball `  N )
c )  =  ( ( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
165140, 162, 163, 164syl3anc 1269 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
f `  y )
( ball `  N )
c )  =  ( ( ( f `  y ) ( ball `  M ) c )  i^i  Y ) )
166156, 165sseqtr4d 3471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  (
( f `  y
) ( ball `  N
) c ) )
167 fnfvelrn 6024 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  Fn  dom  f  /\  y  e.  dom  f )  ->  (
f `  y )  e.  ran  f )
16897, 157, 167syl2an 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( f `  y )  e.  ran  f )
169 oveq1 6302 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( f `  y )  ->  (
z ( ball `  N
) c )  =  ( ( f `  y ) ( ball `  N ) c ) )
170169ssiun2s 4325 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f `  y )  e.  ran  f  -> 
( ( f `  y ) ( ball `  N ) c ) 
C_  U_ z  e.  ran  f ( z (
ball `  N )
c ) )
171168, 170syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
f `  y )
( ball `  N )
c )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
172166, 171sstrd 3444 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  ( `' f " (
y ( ball `  M
) ( c  / 
2 ) ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
173172adantlr 722 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  /\  y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  C_  U_ z  e.  ran  f
( z ( ball `  N ) c ) )
174173ex 436 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( y  e.  ( `' f "
( y ( ball `  M ) ( c  /  2 ) ) )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
175139, 174syld 45 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  ( ( y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) ) )
176131, 175pm2.61dne 2712 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  /\  c  e.  RR+ )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  v  ( x
( ball `  M )
( c  /  2
) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  /\  y  e.  v )  ->  ( (
y ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
177176ralrimiva 2804 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  A. y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
178 iunss 4322 . . . . . . . . . . . . . . 15  |-  ( U_ y  e.  v  (
( y ( ball `  M ) ( c  /  2 ) )  i^i  Y )  C_  U_ z  e.  ran  f
( z ( ball `  N ) c )  <->  A. y  e.  v 
( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
179177, 178sylibr 216 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ y  e.  v  ( ( y (
ball `  M )
( c  /  2
) )  i^i  Y
)  C_  U_ z  e. 
ran  f ( z ( ball `  N
) c ) )
180127, 179eqsstr3d 3469 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  Y  C_  U_ z  e.  ran  f ( z ( ball `  N
) c ) )
181120, 180eqssd 3451 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ z  e.  ran  f ( z (
ball `  N )
c )  =  Y )
182109, 181syl5eq 2499 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  U_ x  e.  ran  f ( x (
ball `  N )
c )  =  Y )
183 iuneq1 4295 . . . . . . . . . . . . 13  |-  ( w  =  ran  f  ->  U_ x  e.  w  ( x ( ball `  N ) c )  =  U_ x  e. 
ran  f ( x ( ball `  N
) c ) )
184183eqeq1d 2455 . . . . . . . . . . . 12  |-  ( w  =  ran  f  -> 
( U_ x  e.  w  ( x ( ball `  N ) c )  =  Y  <->  U_ x  e. 
ran  f ( x ( ball `  N
) c )  =  Y ) )
185184rspcev 3152 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P Y  i^i  Fin )  /\  U_ x  e. 
ran  f ( x ( ball `  N
) c )  =  Y )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y )
186107, 182, 185syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  /\  ( dom  f  C_  v  /\  f : dom  f --> Y  /\  A. x  e.  v  ( ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/)  ->  x  e.  ( `' f "
( x ( ball `  M ) ( c  /  2 ) ) ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y )
187186ex 436 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( dom  f  C_  v  /\  f : dom  f
--> Y  /\  A. x  e.  v  ( (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/)  ->  x  e.  ( `' f " (
x ( ball `  M
) ( c  / 
2 ) ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
18892, 187syld 45 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  (
( f : {
x  e.  v  |  ( ( x (
ball `  M )
( c  /  2
) )  i^i  Y
)  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
189188exlimdv 1781 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  ( E. f ( f : { x  e.  v  |  ( ( x ( ball `  M
) ( c  / 
2 ) )  i^i 
Y )  =/=  (/) } --> Y  /\  A. y  e.  { x  e.  v  |  (
( x ( ball `  M ) ( c  /  2 ) )  i^i  Y )  =/=  (/) }  ( f `  y )  e.  ( y ( ball `  M
) ( c  / 
2 ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
19069, 189mpd 15 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  c  e.  RR+ )  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  Y  C_ 
U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) ) ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y )
191190rexlimdvaa 2882 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) Y 
C_  U_ x  e.  v  ( x ( ball `  M ) ( c  /  2 ) )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x ( ball `  N ) c )  =  Y ) )
19248, 191syld 45 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  c  e.  RR+ )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
193192ralrimdva 2808 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
194 istotbnd3 32115 . . . . 5  |-  ( N  e.  ( TotBnd `  Y
)  <->  ( N  e.  ( Met `  Y
)  /\  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
195194baib 915 . . . 4  |-  ( N  e.  ( Met `  Y
)  ->  ( N  e.  ( TotBnd `  Y )  <->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
1963, 195syl 17 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. c  e.  RR+  E. w  e.  ( ~P Y  i^i  Fin ) U_ x  e.  w  ( x (
ball `  N )
c )  =  Y ) )
197193, 196sylibrd 238 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d )  ->  N  e.  ( TotBnd `  Y )
) )
19840, 197impbid 194 1  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  v  ( x
( ball `  M )
d ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446   E.wex 1665    e. wcel 1889    =/= wne 2624   A.wral 2739   E.wrex 2740   {crab 2743    i^i cin 3405    C_ wss 3406   (/)c0 3733   ~Pcpw 3953   U_ciun 4281    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840    Fn wfn 5580   -->wf 5581   ` cfv 5585  (class class class)co 6295   Fincfn 7574   RRcr 9543   RR*cxr 9679    / cdiv 10276   2c2 10666   RR+crp 11309   *Metcxmt 18967   Metcme 18968   ballcbl 18969   TotBndctotbnd 32110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-2 10675  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-psmet 18974  df-xmet 18975  df-met 18976  df-bl 18977  df-totbnd 32112
This theorem is referenced by:  sstotbnd  32119  sstotbnd3  32120
  Copyright terms: Public domain W3C validator