MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrest Structured version   Unicode version

Theorem ssrest 18907
Description: If  K is a finer topology than  J, then the subspace topologies induced by  A maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
ssrest  |-  ( ( K  e.  V  /\  J  C_  K )  -> 
( Jt  A )  C_  ( Kt  A ) )

Proof of Theorem ssrest
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  x  e.  ( Jt  A
) )
2 ssrexv 3520 . . . . . 6  |-  ( J 
C_  K  ->  ( E. y  e.  J  x  =  ( y  i^i  A )  ->  E. y  e.  K  x  =  ( y  i^i  A
) ) )
32ad2antlr 726 . . . . 5  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( E. y  e.  J  x  =  ( y  i^i  A )  ->  E. y  e.  K  x  =  ( y  i^i  A ) ) )
4 n0i 3745 . . . . . . . 8  |-  ( x  e.  ( Jt  A )  ->  -.  ( Jt  A
)  =  (/) )
5 restfn 14477 . . . . . . . . . 10  |-t  Fn  ( _V  X.  _V )
6 fndm 5613 . . . . . . . . . 10  |-  (t  Fn  ( _V  X.  _V )  ->  domt  =  ( _V  X.  _V ) )
75, 6ax-mp 5 . . . . . . . . 9  |-  domt  =  ( _V  X.  _V )
87ndmov 6352 . . . . . . . 8  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  =  (/) )
94, 8nsyl2 127 . . . . . . 7  |-  ( x  e.  ( Jt  A )  ->  ( J  e. 
_V  /\  A  e.  _V ) )
109adantl 466 . . . . . 6  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( J  e.  _V  /\  A  e.  _V )
)
11 elrest 14480 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
1210, 11syl 16 . . . . 5  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
13 simpll 753 . . . . . 6  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  K  e.  V )
1410simprd 463 . . . . . 6  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  A  e.  _V )
15 elrest 14480 . . . . . 6  |-  ( ( K  e.  V  /\  A  e.  _V )  ->  ( x  e.  ( Kt  A )  <->  E. y  e.  K  x  =  ( y  i^i  A
) ) )
1613, 14, 15syl2anc 661 . . . . 5  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( x  e.  ( Kt  A )  <->  E. y  e.  K  x  =  ( y  i^i  A
) ) )
173, 12, 163imtr4d 268 . . . 4  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( x  e.  ( Jt  A )  ->  x  e.  ( Kt  A ) ) )
181, 17mpd 15 . . 3  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  x  e.  ( Kt  A
) )
1918ex 434 . 2  |-  ( ( K  e.  V  /\  J  C_  K )  -> 
( x  e.  ( Jt  A )  ->  x  e.  ( Kt  A ) ) )
2019ssrdv 3465 1  |-  ( ( K  e.  V  /\  J  C_  K )  -> 
( Jt  A )  C_  ( Kt  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2797   _Vcvv 3072    i^i cin 3430    C_ wss 3431   (/)c0 3740    X. cxp 4941   dom cdm 4943    Fn wfn 5516  (class class class)co 6195   ↾t crest 14473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-rest 14475
This theorem is referenced by:  1stcrest  19184  kgencmp  19245  kgencmp2  19246  kgen2ss  19255  ssufl  19618
  Copyright terms: Public domain W3C validator