Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres Structured version   Unicode version

Theorem ssres 5285
 Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
ssres

Proof of Theorem ssres
StepHypRef Expression
1 ssrin 3705 . 2
2 df-res 4997 . 2
3 df-res 4997 . 2
41, 2, 33sstr4g 3527 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  cvv 3093   cin 3457   wss 3458   cxp 4983   cres 4987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-v 3095  df-in 3465  df-ss 3472  df-res 4997 This theorem is referenced by:  imass1  5357  marypha1lem  7891  sspg  25506  ssps  25508  sspn  25514
 Copyright terms: Public domain W3C validator