Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel2 Structured version   Unicode version

Theorem ssrel2 5102
 Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 5100 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2
Distinct variable groups:   ,,   ,,   ,,   ,,

Proof of Theorem ssrel2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssel 3493 . . . 4
21a1d 25 . . 3
32ralrimivv 2877 . 2
4 eleq1 2529 . . . . . . . . . . . 12
5 eleq1 2529 . . . . . . . . . . . 12
64, 5imbi12d 320 . . . . . . . . . . 11
76biimprcd 225 . . . . . . . . . 10
87ralimi 2850 . . . . . . . . 9
98ralimi 2850 . . . . . . . 8
10 r19.23v 2937 . . . . . . . . . 10
1110ralbii 2888 . . . . . . . . 9
12 r19.23v 2937 . . . . . . . . 9
1311, 12bitri 249 . . . . . . . 8
149, 13sylib 196 . . . . . . 7
1514com23 78 . . . . . 6
1615a2d 26 . . . . 5
1716alimdv 1710 . . . 4
18 dfss2 3488 . . . . 5
19 elxp2 5026 . . . . . . 7
2019imbi2i 312 . . . . . 6
2120albii 1641 . . . . 5
2218, 21bitri 249 . . . 4
23 dfss2 3488 . . . 4
2417, 22, 233imtr4g 270 . . 3
2524com12 31 . 2
263, 25impbid2 204 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369  wal 1393   wceq 1395   wcel 1819  wral 2807  wrex 2808   wss 3471  cop 4038   cxp 5006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-opab 4516  df-xp 5014 This theorem is referenced by:  metuel2  21208  isarchi  27886
 Copyright terms: Public domain W3C validator