Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrecnpr Structured version   Unicode version

Theorem ssrecnpr 31429
Description:  RR is a subset of both  RR and  CC. (Contributed by Steve Rodriguez, 22-Nov-2015.)
Assertion
Ref Expression
ssrecnpr  |-  ( S  e.  { RR ,  CC }  ->  RR  C_  S
)

Proof of Theorem ssrecnpr
StepHypRef Expression
1 elpri 4036 . 2  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2 eqimss2 3542 . . 3  |-  ( S  =  RR  ->  RR  C_  S )
3 ax-resscn 9538 . . . 4  |-  RR  C_  CC
4 sseq2 3511 . . . 4  |-  ( S  =  CC  ->  ( RR  C_  S  <->  RR  C_  CC ) )
53, 4mpbiri 233 . . 3  |-  ( S  =  CC  ->  RR  C_  S )
62, 5jaoi 377 . 2  |-  ( ( S  =  RR  \/  S  =  CC )  ->  RR  C_  S )
71, 6syl 16 1  |-  ( S  e.  { RR ,  CC }  ->  RR  C_  S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    = wceq 1398    e. wcel 1823    C_ wss 3461   {cpr 4018   CCcc 9479   RRcr 9480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-resscn 9538
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-un 3466  df-in 3468  df-ss 3475  df-sn 4017  df-pr 4019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator