Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtrALT2 Structured version   Unicode version

Theorem sspwtrALT2 31911
Description: Short predicate calculus proof of the right-to-left implication of dftr4 4501. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 31908, which is the virtual deduction proof sspwtr 31907 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtrALT2  |-  ( A 
C_  ~P A  ->  Tr  A )

Proof of Theorem sspwtrALT2
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3461 . . . . . 6  |-  ( A 
C_  ~P A  ->  (
y  e.  A  -> 
y  e.  ~P A
) )
21adantld 467 . . . . 5  |-  ( A 
C_  ~P A  ->  (
( z  e.  y  /\  y  e.  A
)  ->  y  e.  ~P A ) )
3 elpwi 3980 . . . . 5  |-  ( y  e.  ~P A  -> 
y  C_  A )
42, 3syl6 33 . . . 4  |-  ( A 
C_  ~P A  ->  (
( z  e.  y  /\  y  e.  A
)  ->  y  C_  A ) )
5 simpl 457 . . . . 5  |-  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  y )
65a1i 11 . . . 4  |-  ( A 
C_  ~P A  ->  (
( z  e.  y  /\  y  e.  A
)  ->  z  e.  y ) )
7 ssel 3461 . . . 4  |-  ( y 
C_  A  ->  (
z  e.  y  -> 
z  e.  A ) )
84, 6, 7syl6c 64 . . 3  |-  ( A 
C_  ~P A  ->  (
( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) )
98alrimivv 1687 . 2  |-  ( A 
C_  ~P A  ->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
10 dftr2 4498 . 2  |-  ( Tr  A  <->  A. z A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
119, 10sylibr 212 1  |-  ( A 
C_  ~P A  ->  Tr  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1368    e. wcel 1758    C_ wss 3439   ~Pcpw 3971   Tr wtr 4496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3080  df-in 3446  df-ss 3453  df-pw 3973  df-uni 4203  df-tr 4497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator