Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtr Structured version   Unicode version

Theorem sspwtr 37125
Description: Virtual deduction proof of the right-to-left implication of dftr4 4466. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 37125 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtr  |-  ( A 
C_  ~P A  ->  Tr  A )

Proof of Theorem sspwtr
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4463 . . 3  |-  ( Tr  A  <->  A. z A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
2 idn1 36858 . . . . . . . 8  |-  (. A  C_ 
~P A  ->.  A  C_  ~P A ).
3 idn2 36906 . . . . . . . . 9  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  ( z  e.  y  /\  y  e.  A ) ).
4 simpr 462 . . . . . . . . 9  |-  ( ( z  e.  y  /\  y  e.  A )  ->  y  e.  A )
53, 4e2 36924 . . . . . . . 8  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  y  e.  A ).
6 ssel 3401 . . . . . . . 8  |-  ( A 
C_  ~P A  ->  (
y  e.  A  -> 
y  e.  ~P A
) )
72, 5, 6e12 37027 . . . . . . 7  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  y  e.  ~P A ).
8 elpwi 3933 . . . . . . 7  |-  ( y  e.  ~P A  -> 
y  C_  A )
97, 8e2 36924 . . . . . 6  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  y 
C_  A ).
10 simpl 458 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  y )
113, 10e2 36924 . . . . . 6  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  z  e.  y ).
12 ssel 3401 . . . . . 6  |-  ( y 
C_  A  ->  (
z  e.  y  -> 
z  e.  A ) )
139, 11, 12e22 36964 . . . . 5  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  z  e.  A ).
1413in2 36898 . . . 4  |-  (. A  C_ 
~P A  ->.  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ).
1514gen12 36911 . . 3  |-  (. A  C_ 
~P A  ->.  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ).
16 biimpr 201 . . 3  |-  ( ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A )  ->  Tr  A ) )
171, 15, 16e01 36984 . 2  |-  (. A  C_ 
~P A  ->.  Tr  A ).
1817in1 36855 1  |-  ( A 
C_  ~P A  ->  Tr  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    e. wcel 1872    C_ wss 3379   ~Pcpw 3924   Tr wtr 4461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-v 3024  df-in 3386  df-ss 3393  df-pw 3926  df-uni 4163  df-tr 4462  df-vd1 36854  df-vd2 36862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator