Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpVD Structured version   Visualization version   Unicode version

Theorem sspwimpVD 37316
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 36939) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 37315 is sspwimpVD 37316 without virtual deductions and was derived from sspwimpVD 37316. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. A  C_  B  ->.  A  C_  B ).
2::  |-  (. ..............  x  e.  ~P A  ->.  x  e.  ~P A ).
3:2:  |-  (. ..............  x  e.  ~P A  ->.  x  C_  A ).
4:3,1:  |-  (. (. A  C_  B ,. x  e.  ~P A ).  ->.  x  C_  B ).
5::  |-  x  e.  _V
6:4,5:  |-  (. (. A  C_  B ,. x  e.  ~P A ).  ->.  x  e.  ~P B  ).
7:6:  |-  (. A  C_  B  ->.  ( x  e.  ~P A  ->  x  e.  ~P B )  ).
8:7:  |-  (. A  C_  B  ->.  A. x ( x  e.  ~P A  ->  x  e.  ~P B ) ).
9:8:  |-  (. A  C_  B  ->.  ~P A  C_  ~P B ).
qed:9:  |-  ( A  C_  B  ->  ~P A  C_  ~P B )
Assertion
Ref Expression
sspwimpVD  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )

Proof of Theorem sspwimpVD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3048 . . . . . . 7  |-  x  e. 
_V
21vd01 36976 . . . . . 6  |-  (. T.  ->.  x  e.  _V ).
3 idn1 36944 . . . . . . 7  |-  (. A  C_  B  ->.  A  C_  B ).
4 idn1 36944 . . . . . . . 8  |-  (. x  e.  ~P A  ->.  x  e.  ~P A ).
5 elpwi 3960 . . . . . . . 8  |-  ( x  e.  ~P A  ->  x  C_  A )
64, 5el1 37007 . . . . . . 7  |-  (. x  e.  ~P A  ->.  x  C_  A ).
7 sstr 3440 . . . . . . . 8  |-  ( ( x  C_  A  /\  A  C_  B )  ->  x  C_  B )
87ancoms 455 . . . . . . 7  |-  ( ( A  C_  B  /\  x  C_  A )  ->  x  C_  B )
93, 6, 8el12 37113 . . . . . 6  |-  (. (. A  C_  B ,. x  e.  ~P A ).  ->.  x  C_  B ).
102, 9elpwgdedVD 37314 . . . . . 6  |-  (. (. T.  ,. (. A  C_  B ,. x  e.  ~P A ). ).  ->.  x  e.  ~P B ).
112, 9, 10un0.1 37166 . . . . 5  |-  (. (. A  C_  B ,. x  e.  ~P A ).  ->.  x  e.  ~P B ).
1211int2 36985 . . . 4  |-  (. A  C_  B  ->.  ( x  e. 
~P A  ->  x  e.  ~P B ) ).
1312gen11 36995 . . 3  |-  (. A  C_  B  ->.  A. x ( x  e.  ~P A  ->  x  e.  ~P B
) ).
14 dfss2 3421 . . . 4  |-  ( ~P A  C_  ~P B  <->  A. x ( x  e. 
~P A  ->  x  e.  ~P B ) )
1514biimpri 210 . . 3  |-  ( A. x ( x  e. 
~P A  ->  x  e.  ~P B )  ->  ~P A  C_  ~P B
)
1613, 15el1 37007 . 2  |-  (. A  C_  B  ->.  ~P A  C_  ~P B ).
1716in1 36941 1  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1442   T. wtru 1445    e. wcel 1887   _Vcvv 3045    C_ wss 3404   ~Pcpw 3951   (.wvhc2 36950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-v 3047  df-in 3411  df-ss 3418  df-pw 3953  df-vd1 36940  df-vhc2 36951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator