Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpALT2 Structured version   Unicode version

Theorem sspwimpALT2 36772
 Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in http://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimpALT2

Proof of Theorem sspwimpALT2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3064 . . . 4
2 elpwi 3966 . . . . 5
3 id 23 . . . . 5
42, 3sylan9ssr 3458 . . . 4
5 elpwg 3965 . . . . 5
65biimpar 485 . . . 4
71, 4, 6sylancr 663 . . 3
87ex 434 . 2
98ssrdv 3450 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wcel 1844  cvv 3061   wss 3416  cpw 3957 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382 This theorem depends on definitions:  df-bi 187  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-v 3063  df-in 3423  df-ss 3430  df-pw 3959 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator