Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimp Unicode version

Theorem sspwimp 27384
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimp 27384, using conventional notation, was translated from virtual deduction form, sspwimpVD 27385, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimp  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )

Proof of Theorem sspwimp
StepHypRef Expression
1 vex 2730 . . . . . . 7  |-  x  e. 
_V
21a1i 12 . . . . . 6  |-  (  T. 
->  x  e.  _V )
3 id 21 . . . . . . 7  |-  ( A 
C_  B  ->  A  C_  B )
4 id 21 . . . . . . . 8  |-  ( x  e.  ~P A  ->  x  e.  ~P A
)
5 elpwi 3538 . . . . . . . 8  |-  ( x  e.  ~P A  ->  x  C_  A )
64, 5syl 17 . . . . . . 7  |-  ( x  e.  ~P A  ->  x  C_  A )
7 sstr 3108 . . . . . . . 8  |-  ( ( x  C_  A  /\  A  C_  B )  ->  x  C_  B )
87ancoms 441 . . . . . . 7  |-  ( ( A  C_  B  /\  x  C_  A )  ->  x  C_  B )
93, 6, 8syl2an 465 . . . . . 6  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  C_  B
)
102, 9elpwgded 27023 . . . . . 6  |-  ( (  T.  /\  ( A 
C_  B  /\  x  e.  ~P A ) )  ->  x  e.  ~P B )
112, 9, 10uun0.1 27243 . . . . 5  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  e.  ~P B )
1211ex 425 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
1312alrimiv 2012 . . 3  |-  ( A 
C_  B  ->  A. x
( x  e.  ~P A  ->  x  e.  ~P B ) )
14 dfss2 3092 . . . 4  |-  ( ~P A  C_  ~P B  <->  A. x ( x  e. 
~P A  ->  x  e.  ~P B ) )
1514biimpri 199 . . 3  |-  ( A. x ( x  e. 
~P A  ->  x  e.  ~P B )  ->  ~P A  C_  ~P B
)
1613, 15syl 17 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
1716iin1 27033 1  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    T. wtru 1312   A.wal 1532    e. wcel 1621   _Vcvv 2727    C_ wss 3078   ~Pcpw 3530
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-in 3085  df-ss 3089  df-pw 3532
  Copyright terms: Public domain W3C validator