MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssphl Unicode version

Theorem ssphl 21326
Description: A Banach subspace of an inner product space is a Hilbert space. (Contributed by NM, 11-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
ssphl.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
ssphl  |-  ( ( U  e.  CPreHil OLD  /\  W  e.  H  /\  W  e.  CBan )  ->  W  e.  CHil OLD )

Proof of Theorem ssphl
StepHypRef Expression
1 simp3 962 . 2  |-  ( ( U  e.  CPreHil OLD  /\  W  e.  H  /\  W  e.  CBan )  ->  W  e.  CBan )
2 ssphl.h . . . 4  |-  H  =  ( SubSp `  U )
32sspph 21263 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  W  e.  H )  ->  W  e.  CPreHil OLD )
433adant3 980 . 2  |-  ( ( U  e.  CPreHil OLD  /\  W  e.  H  /\  W  e.  CBan )  ->  W  e.  CPreHil OLD )
5 ishlo 21296 . 2  |-  ( W  e.  CHil OLD  <->  ( W  e. 
CBan  /\  W  e.  CPreHil OLD ) )
61, 4, 5sylanbrc 648 1  |-  ( ( U  e.  CPreHil OLD  /\  W  e.  H  /\  W  e.  CBan )  ->  W  e.  CHil OLD )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4592   SubSpcss 21127   CPreHil OLDccphlo 21220   CBanccbn 21271   CHil
OLDchlo 21294
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ssp 21128  df-ph 21221  df-hlo 21295
  Copyright terms: Public domain W3C validator