MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspg Structured version   Unicode version

Theorem sspg 24279
Description: Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y  |-  Y  =  ( BaseSet `  W )
sspg.g  |-  G  =  ( +v `  U
)
sspg.f  |-  F  =  ( +v `  W
)
sspg.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspg  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  =  ( G  |`  ( Y  X.  Y
) ) )

Proof of Theorem sspg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . . . . . . . . 11  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 sspg.g . . . . . . . . . . 11  |-  G  =  ( +v `  U
)
31, 2nvgf 24149 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  G : ( ( BaseSet `  U )  X.  ( BaseSet `  U )
) --> ( BaseSet `  U
) )
4 ffun 5670 . . . . . . . . . 10  |-  ( G : ( ( BaseSet `  U )  X.  ( BaseSet
`  U ) ) --> ( BaseSet `  U )  ->  Fun  G )
53, 4syl 16 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  Fun  G )
6 funres 5566 . . . . . . . . 9  |-  ( Fun 
G  ->  Fun  ( G  |`  ( Y  X.  Y
) ) )
75, 6syl 16 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  Fun  ( G  |`  ( Y  X.  Y
) ) )
87adantr 465 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Fun  ( G  |`  ( Y  X.  Y ) ) )
9 sspg.h . . . . . . . . . 10  |-  H  =  ( SubSp `  U )
109sspnv 24277 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
11 sspg.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
12 sspg.f . . . . . . . . . 10  |-  F  =  ( +v `  W
)
1311, 12nvgf 24149 . . . . . . . . 9  |-  ( W  e.  NrmCVec  ->  F : ( Y  X.  Y ) --> Y )
1410, 13syl 16 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F : ( Y  X.  Y ) --> Y )
15 ffn 5668 . . . . . . . 8  |-  ( F : ( Y  X.  Y ) --> Y  ->  F  Fn  ( Y  X.  Y ) )
1614, 15syl 16 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  Fn  ( Y  X.  Y
) )
17 fnresdm 5629 . . . . . . . . 9  |-  ( F  Fn  ( Y  X.  Y )  ->  ( F  |`  ( Y  X.  Y ) )  =  F )
1816, 17syl 16 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( F  |`  ( Y  X.  Y ) )  =  F )
19 eqid 2454 . . . . . . . . . . . 12  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
20 eqid 2454 . . . . . . . . . . . 12  |-  ( .sOLD `  W )  =  ( .sOLD `  W )
21 eqid 2454 . . . . . . . . . . . 12  |-  ( normCV `  U )  =  (
normCV
`  U )
22 eqid 2454 . . . . . . . . . . . 12  |-  ( normCV `  W )  =  (
normCV
`  W )
232, 12, 19, 20, 21, 22, 9isssp 24275 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( W  e.  H  <->  ( W  e.  NrmCVec 
/\  ( F  C_  G  /\  ( .sOLD `  W )  C_  ( .sOLD `  U )  /\  ( normCV `  W
)  C_  ( normCV `  U
) ) ) ) )
2423simplbda 624 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( F  C_  G  /\  ( .sOLD `  W ) 
C_  ( .sOLD `  U )  /\  ( normCV `  W )  C_  ( normCV `  U ) ) )
2524simp1d 1000 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  C_  G )
26 ssres 5245 . . . . . . . . 9  |-  ( F 
C_  G  ->  ( F  |`  ( Y  X.  Y ) )  C_  ( G  |`  ( Y  X.  Y ) ) )
2725, 26syl 16 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( F  |`  ( Y  X.  Y ) )  C_  ( G  |`  ( Y  X.  Y ) ) )
2818, 27eqsstr3d 3500 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  C_  ( G  |`  ( Y  X.  Y ) ) )
298, 16, 283jca 1168 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( Fun  ( G  |`  ( Y  X.  Y ) )  /\  F  Fn  ( Y  X.  Y )  /\  F  C_  ( G  |`  ( Y  X.  Y
) ) ) )
30 oprssov 6343 . . . . . 6  |-  ( ( ( Fun  ( G  |`  ( Y  X.  Y
) )  /\  F  Fn  ( Y  X.  Y
)  /\  F  C_  ( G  |`  ( Y  X.  Y ) ) )  /\  ( x  e.  Y  /\  y  e.  Y ) )  -> 
( x ( G  |`  ( Y  X.  Y
) ) y )  =  ( x F y ) )
3129, 30sylan 471 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x ( G  |`  ( Y  X.  Y
) ) y )  =  ( x F y ) )
3231eqcomd 2462 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x F y )  =  ( x ( G  |`  ( Y  X.  Y ) ) y ) )
3332ralrimivva 2914 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  A. x  e.  Y  A. y  e.  Y  ( x F y )  =  ( x ( G  |`  ( Y  X.  Y
) ) y ) )
34 eqid 2454 . . 3  |-  ( Y  X.  Y )  =  ( Y  X.  Y
)
3533, 34jctil 537 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( Y  X.  Y
)  =  ( Y  X.  Y )  /\  A. x  e.  Y  A. y  e.  Y  (
x F y )  =  ( x ( G  |`  ( Y  X.  Y ) ) y ) ) )
36 ffn 5668 . . . . . 6  |-  ( G : ( ( BaseSet `  U )  X.  ( BaseSet
`  U ) ) --> ( BaseSet `  U )  ->  G  Fn  ( (
BaseSet `  U )  X.  ( BaseSet `  U )
) )
373, 36syl 16 . . . . 5  |-  ( U  e.  NrmCVec  ->  G  Fn  (
( BaseSet `  U )  X.  ( BaseSet `  U )
) )
3837adantr 465 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  G  Fn  ( ( BaseSet `  U
)  X.  ( BaseSet `  U ) ) )
391, 11, 9sspba 24278 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
40 xpss12 5054 . . . . 5  |-  ( ( Y  C_  ( BaseSet `  U )  /\  Y  C_  ( BaseSet `  U )
)  ->  ( Y  X.  Y )  C_  (
( BaseSet `  U )  X.  ( BaseSet `  U )
) )
4139, 39, 40syl2anc 661 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( Y  X.  Y )  C_  ( ( BaseSet `  U
)  X.  ( BaseSet `  U ) ) )
42 fnssres 5633 . . . 4  |-  ( ( G  Fn  ( (
BaseSet `  U )  X.  ( BaseSet `  U )
)  /\  ( Y  X.  Y )  C_  (
( BaseSet `  U )  X.  ( BaseSet `  U )
) )  ->  ( G  |`  ( Y  X.  Y ) )  Fn  ( Y  X.  Y
) )
4338, 41, 42syl2anc 661 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( G  |`  ( Y  X.  Y ) )  Fn  ( Y  X.  Y
) )
44 eqfnov 6307 . . 3  |-  ( ( F  Fn  ( Y  X.  Y )  /\  ( G  |`  ( Y  X.  Y ) )  Fn  ( Y  X.  Y ) )  -> 
( F  =  ( G  |`  ( Y  X.  Y ) )  <->  ( ( Y  X.  Y )  =  ( Y  X.  Y
)  /\  A. x  e.  Y  A. y  e.  Y  ( x F y )  =  ( x ( G  |`  ( Y  X.  Y
) ) y ) ) ) )
4516, 43, 44syl2anc 661 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( F  =  ( G  |`  ( Y  X.  Y
) )  <->  ( ( Y  X.  Y )  =  ( Y  X.  Y
)  /\  A. x  e.  Y  A. y  e.  Y  ( x F y )  =  ( x ( G  |`  ( Y  X.  Y
) ) y ) ) ) )
4635, 45mpbird 232 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  =  ( G  |`  ( Y  X.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799    C_ wss 3437    X. cxp 4947    |` cres 4951   Fun wfun 5521    Fn wfn 5522   -->wf 5523   ` cfv 5527  (class class class)co 6201   NrmCVeccnv 24115   +vcpv 24116   BaseSetcba 24117   .sOLDcns 24118   normCVcnmcv 24121   SubSpcss 24272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-1st 6688  df-2nd 6689  df-grpo 23831  df-ablo 23922  df-vc 24077  df-nv 24123  df-va 24126  df-ba 24127  df-sm 24128  df-0v 24129  df-nmcv 24131  df-ssp 24273
This theorem is referenced by:  sspgval  24280
  Copyright terms: Public domain W3C validator