MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssorduni Structured version   Unicode version

Theorem ssorduni 6508
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni  |-  ( A 
C_  On  ->  Ord  U. A )

Proof of Theorem ssorduni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4204 . . . . 5  |-  ( x  e.  U. A  <->  E. y  e.  A  x  e.  y )
2 ssel 3459 . . . . . . . . 9  |-  ( A 
C_  On  ->  ( y  e.  A  ->  y  e.  On ) )
3 onelss 4870 . . . . . . . . 9  |-  ( y  e.  On  ->  (
x  e.  y  ->  x  C_  y ) )
42, 3syl6 33 . . . . . . . 8  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  ->  x  C_  y ) ) )
5 anc2r 556 . . . . . . . 8  |-  ( ( y  e.  A  -> 
( x  e.  y  ->  x  C_  y
) )  ->  (
y  e.  A  -> 
( x  e.  y  ->  ( x  C_  y  /\  y  e.  A
) ) ) )
64, 5syl 16 . . . . . . 7  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  -> 
( x  C_  y  /\  y  e.  A
) ) ) )
7 ssuni 4222 . . . . . . 7  |-  ( ( x  C_  y  /\  y  e.  A )  ->  x  C_  U. A )
86, 7syl8 70 . . . . . 6  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  ->  x  C_  U. A ) ) )
98rexlimdv 2946 . . . . 5  |-  ( A 
C_  On  ->  ( E. y  e.  A  x  e.  y  ->  x  C_ 
U. A ) )
101, 9syl5bi 217 . . . 4  |-  ( A 
C_  On  ->  ( x  e.  U. A  ->  x  C_  U. A ) )
1110ralrimiv 2828 . . 3  |-  ( A 
C_  On  ->  A. x  e.  U. A x  C_  U. A )
12 dftr3 4498 . . 3  |-  ( Tr 
U. A  <->  A. x  e.  U. A x  C_  U. A )
1311, 12sylibr 212 . 2  |-  ( A 
C_  On  ->  Tr  U. A )
14 onelon 4853 . . . . . . 7  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
1514ex 434 . . . . . 6  |-  ( y  e.  On  ->  (
x  e.  y  ->  x  e.  On )
)
162, 15syl6 33 . . . . 5  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  ->  x  e.  On )
) )
1716rexlimdv 2946 . . . 4  |-  ( A 
C_  On  ->  ( E. y  e.  A  x  e.  y  ->  x  e.  On ) )
181, 17syl5bi 217 . . 3  |-  ( A 
C_  On  ->  ( x  e.  U. A  ->  x  e.  On )
)
1918ssrdv 3471 . 2  |-  ( A 
C_  On  ->  U. A  C_  On )
20 ordon 6505 . . 3  |-  Ord  On
21 trssord 4845 . . . 4  |-  ( ( Tr  U. A  /\  U. A  C_  On  /\  Ord  On )  ->  Ord  U. A
)
22213exp 1187 . . 3  |-  ( Tr 
U. A  ->  ( U. A  C_  On  ->  ( Ord  On  ->  Ord  U. A ) ) )
2320, 22mpii 43 . 2  |-  ( Tr 
U. A  ->  ( U. A  C_  On  ->  Ord  U. A ) )
2413, 19, 23sylc 60 1  |-  ( A 
C_  On  ->  Ord  U. A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758   A.wral 2799   E.wrex 2800    C_ wss 3437   U.cuni 4200   Tr wtr 4494   Ord word 4827   Oncon0 4828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832
This theorem is referenced by:  ssonuni  6509  ssonprc  6514  orduni  6516  onsucuni  6550  limuni3  6574  onfununi  6913  tfrlem8  6954  onssnum  8322  unialeph  8383  cfslbn  8548  hsmexlem1  8707  inaprc  9115  nobndlem1  27978  nobndlem2  27979
  Copyright terms: Public domain W3C validator