Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssoprab2i Structured version   Unicode version

Theorem ssoprab2i 6368
 Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
ssoprab2i.1
Assertion
Ref Expression
ssoprab2i
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem ssoprab2i
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssoprab2i.1 . . . . 5
21anim2i 569 . . . 4
322eximi 1631 . . 3
43ssopab2i 4770 . 2
5 dfoprab2 6320 . 2
6 dfoprab2 6320 . 2
74, 5, 63sstr4i 3538 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1374  wex 1591   wss 3471  cop 4028  copab 4499  coprab 6278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-opab 4501  df-oprab 6281 This theorem is referenced by:  sxbrsigalem5  27887
 Copyright terms: Public domain W3C validator