MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssoprab2 Structured version   Unicode version

Theorem ssoprab2 6338
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4763. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )

Proof of Theorem ssoprab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim2d 565 . . . . . 6  |-  ( (
ph  ->  ps )  -> 
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
32aleximi 1640 . . . . 5  |-  ( A. z ( ph  ->  ps )  ->  ( E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ps ) ) )
43aleximi 1640 . . . 4  |-  ( A. y A. z ( ph  ->  ps )  ->  ( E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
54aleximi 1640 . . 3  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  ( E. x E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
65ss2abdv 3558 . 2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }  C_  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) } )
7 df-oprab 6285 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
8 df-oprab 6285 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) }
96, 7, 83sstr4g 3530 1  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1381    = wceq 1383   E.wex 1599   {cab 2428    C_ wss 3461   <.cop 4020   {coprab 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-in 3468  df-ss 3475  df-oprab 6285
This theorem is referenced by:  ssoprab2b  6339  joinfval  15609  meetfval  15623
  Copyright terms: Public domain W3C validator