Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2dv Structured version   Visualization version   Unicode version

Theorem ssopab2dv 4730
 Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1
Assertion
Ref Expression
ssopab2dv
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3
21alrimivv 1774 . 2
3 ssopab2 4727 . 2
42, 3syl 17 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1442   wss 3404  copab 4460 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-in 3411  df-ss 3418  df-opab 4462 This theorem is referenced by:  xpss12  4940  coss1  4990  coss2  4991  cnvss  5007  aceq3lem  8551  coss12d  13036  shftfval  13133  sslm  20315  ulmval  23335  clwlkswlks  25486  iseupa  25693  fmptss  28277  fpwrelmap  28318  dicssdvh  34754
 Copyright terms: Public domain W3C validator