Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnn0ssfz Structured version   Unicode version

Theorem ssnn0ssfz 32233
Description: For any finite subset of  NN0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 27362. (Contributed by AV, 30-Sep-2019.)
Assertion
Ref Expression
ssnn0ssfz  |-  ( A  e.  ( ~P NN0  i^i 
Fin )  ->  E. n  e.  NN0  A  C_  (
0 ... n ) )
Distinct variable group:    A, n

Proof of Theorem ssnn0ssfz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 10811 . . 3  |-  0  e.  NN0
2 simpr 461 . . . 4  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =  (/) )  ->  A  =  (/) )
3 0ss 3814 . . . 4  |-  (/)  C_  (
0 ... 0 )
42, 3syl6eqss 3554 . . 3  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =  (/) )  ->  A  C_  ( 0 ... 0 ) )
5 oveq2 6293 . . . . 5  |-  ( n  =  0  ->  (
0 ... n )  =  ( 0 ... 0
) )
65sseq2d 3532 . . . 4  |-  ( n  =  0  ->  ( A  C_  ( 0 ... n )  <->  A  C_  (
0 ... 0 ) ) )
76rspcev 3214 . . 3  |-  ( ( 0  e.  NN0  /\  A  C_  ( 0 ... 0 ) )  ->  E. n  e.  NN0  A 
C_  ( 0 ... n ) )
81, 4, 7sylancr 663 . 2  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =  (/) )  ->  E. n  e.  NN0  A 
C_  ( 0 ... n ) )
9 elin 3687 . . . . . . 7  |-  ( A  e.  ( ~P NN0  i^i 
Fin )  <->  ( A  e.  ~P NN0  /\  A  e.  Fin ) )
109simplbi 460 . . . . . 6  |-  ( A  e.  ( ~P NN0  i^i 
Fin )  ->  A  e.  ~P NN0 )
1110adantr 465 . . . . 5  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  A  e.  ~P NN0 )
1211elpwid 4020 . . . 4  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  A  C_  NN0 )
13 nn0ssre 10800 . . . . . . 7  |-  NN0  C_  RR
14 ltso 9666 . . . . . . 7  |-  <  Or  RR
15 soss 4818 . . . . . . 7  |-  ( NN0  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN0 ) )
1613, 14, 15mp2 9 . . . . . 6  |-  <  Or  NN0
1716a1i 11 . . . . 5  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  <  Or  NN0 )
189simprbi 464 . . . . . 6  |-  ( A  e.  ( ~P NN0  i^i 
Fin )  ->  A  e.  Fin )
1918adantr 465 . . . . 5  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  A  e.  Fin )
20 simpr 461 . . . . 5  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  A  =/=  (/) )
21 fisupcl 7928 . . . . 5  |-  ( (  <  Or  NN0  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A  C_ 
NN0 ) )  ->  sup ( A ,  NN0 ,  <  )  e.  A
)
2217, 19, 20, 12, 21syl13anc 1230 . . . 4  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  sup ( A ,  NN0 ,  <  )  e.  A
)
2312, 22sseldd 3505 . . 3  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  sup ( A ,  NN0 ,  <  )  e.  NN0 )
2412sselda 3504 . . . . . . 7  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  x  e.  NN0 )
25 nn0uz 11117 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2624, 25syl6eleq 2565 . . . . . 6  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  x  e.  ( ZZ>= ` 
0 ) )
2724nn0zd 10965 . . . . . . 7  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  x  e.  ZZ )
2812adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  A  C_  NN0 )
2922adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  sup ( A ,  NN0 ,  <  )  e.  A )
3028, 29sseldd 3505 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  sup ( A ,  NN0 ,  <  )  e. 
NN0 )
3130nn0zd 10965 . . . . . . 7  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  sup ( A ,  NN0 ,  <  )  e.  ZZ )
32 fisup2g 7927 . . . . . . . . . . . 12  |-  ( (  <  Or  NN0  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A  C_ 
NN0 ) )  ->  E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  NN0  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
3317, 19, 20, 12, 32syl13anc 1230 . . . . . . . . . . 11  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  NN0  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
34 ssrexv 3565 . . . . . . . . . . 11  |-  ( A 
C_  NN0  ->  ( E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  NN0  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  ->  E. x  e.  NN0  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  NN0  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )
3512, 33, 34sylc 60 . . . . . . . . . 10  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  E. x  e.  NN0  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  NN0  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
3617, 35supub 7920 . . . . . . . . 9  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  -> 
( x  e.  A  ->  -.  sup ( A ,  NN0 ,  <  )  <  x ) )
3736imp 429 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  -.  sup ( A ,  NN0 ,  <  )  <  x )
3824nn0red 10854 . . . . . . . . 9  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  x  e.  RR )
3930nn0red 10854 . . . . . . . . 9  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  sup ( A ,  NN0 ,  <  )  e.  RR )
4038, 39lenltd 9731 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  ( x  <_  sup ( A ,  NN0 ,  <  )  <->  -.  sup ( A ,  NN0 ,  <  )  <  x ) )
4137, 40mpbird 232 . . . . . . 7  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  x  <_  sup ( A ,  NN0 ,  <  ) )
42 eluz2 11089 . . . . . . 7  |-  ( sup ( A ,  NN0 ,  <  )  e.  (
ZZ>= `  x )  <->  ( x  e.  ZZ  /\  sup ( A ,  NN0 ,  <  )  e.  ZZ  /\  x  <_  sup ( A ,  NN0 ,  <  ) ) )
4327, 31, 41, 42syl3anbrc 1180 . . . . . 6  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  sup ( A ,  NN0 ,  <  )  e.  ( ZZ>= `  x )
)
44 eluzfz 11684 . . . . . 6  |-  ( ( x  e.  ( ZZ>= ` 
0 )  /\  sup ( A ,  NN0 ,  <  )  e.  ( ZZ>= `  x ) )  ->  x  e.  ( 0 ... sup ( A ,  NN0 ,  <  ) ) )
4526, 43, 44syl2anc 661 . . . . 5  |-  ( ( ( A  e.  ( ~P NN0  i^i  Fin )  /\  A  =/=  (/) )  /\  x  e.  A )  ->  x  e.  ( 0 ... sup ( A ,  NN0 ,  <  ) ) )
4645ex 434 . . . 4  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  -> 
( x  e.  A  ->  x  e.  ( 0 ... sup ( A ,  NN0 ,  <  ) ) ) )
4746ssrdv 3510 . . 3  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  A  C_  ( 0 ...
sup ( A ,  NN0 ,  <  ) ) )
48 oveq2 6293 . . . . 5  |-  ( n  =  sup ( A ,  NN0 ,  <  )  ->  ( 0 ... n )  =  ( 0 ... sup ( A ,  NN0 ,  <  ) ) )
4948sseq2d 3532 . . . 4  |-  ( n  =  sup ( A ,  NN0 ,  <  )  ->  ( A  C_  ( 0 ... n
)  <->  A  C_  ( 0 ... sup ( A ,  NN0 ,  <  ) ) ) )
5049rspcev 3214 . . 3  |-  ( ( sup ( A ,  NN0 ,  <  )  e. 
NN0  /\  A  C_  (
0 ... sup ( A ,  NN0 ,  <  ) ) )  ->  E. n  e.  NN0  A  C_  (
0 ... n ) )
5123, 47, 50syl2anc 661 . 2  |-  ( ( A  e.  ( ~P
NN0  i^i  Fin )  /\  A  =/=  (/) )  ->  E. n  e.  NN0  A 
C_  ( 0 ... n ) )
528, 51pm2.61dane 2785 1  |-  ( A  e.  ( ~P NN0  i^i 
Fin )  ->  E. n  e.  NN0  A  C_  (
0 ... n ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   class class class wbr 4447    Or wor 4799   ` cfv 5588  (class class class)co 6285   Fincfn 7517   supcsup 7901   RRcr 9492   0cc0 9493    < clt 9629    <_ cle 9630   NN0cn0 10796   ZZcz 10865   ZZ>=cuz 11083   ...cfz 11673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11084  df-fz 11674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator