MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnei2 Structured version   Unicode version

Theorem ssnei2 18742
Description: Any subset of  X containing a neighborhood of a set is a neighborhood of this set. Proposition Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
ssnei2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem ssnei2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simprr 756 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  C_  X )
2 neii2 18734 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
3 sstr2 3384 . . . . . . 7  |-  ( g 
C_  N  ->  ( N  C_  M  ->  g  C_  M ) )
43com12 31 . . . . . 6  |-  ( N 
C_  M  ->  (
g  C_  N  ->  g 
C_  M ) )
54anim2d 565 . . . . 5  |-  ( N 
C_  M  ->  (
( S  C_  g  /\  g  C_  N )  ->  ( S  C_  g  /\  g  C_  M
) ) )
65reximdv 2848 . . . 4  |-  ( N 
C_  M  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) )
72, 6mpan9 469 . . 3  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  N  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) )
87adantrr 716 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) )
9 neips.1 . . . . 5  |-  X  = 
U. J
109neiss2 18727 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
119isnei 18729 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( M  e.  ( ( nei `  J
) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
1210, 11syldan 470 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( M  e.  ( ( nei `  J
) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
1312adantr 465 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  ( M  e.  ( ( nei `  J ) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
141, 8, 13mpbir2and 913 1  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2737    C_ wss 3349   U.cuni 4112   ` cfv 5439   Topctop 18520   neicnei 18723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-top 18525  df-nei 18724
This theorem is referenced by:  topssnei  18750  nllyrest  19112  nllyidm  19115  hausllycmp  19120  cldllycmp  19121  txnlly  19232  neifil  19475  utop2nei  19847  cnllycmp  20550
  Copyright terms: Public domain W3C validator