![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > HSE Home > Th. List > ssmd2 | Structured version Unicode version |
Description: Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssmd2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3672 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | chub2 25056 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ss 3468 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | adantrl 715 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | simpl 457 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | sseqin2 3670 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | sylib 196 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | adantl 466 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | oveq2d 6209 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 4, 9 | sseqtr4d 3494 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | a1d 25 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | exp32 605 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | ralrimdv 2904 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | adantr 465 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | mdbr2 25845 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 15 | ancoms 453 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | sylibrd 234 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | 3impia 1185 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-rep 4504 ax-sep 4514 ax-nul 4522 ax-pow 4571 ax-pr 4632 ax-un 6475 ax-inf2 7951 ax-cc 8708 ax-cnex 9442 ax-resscn 9443 ax-1cn 9444 ax-icn 9445 ax-addcl 9446 ax-addrcl 9447 ax-mulcl 9448 ax-mulrcl 9449 ax-mulcom 9450 ax-addass 9451 ax-mulass 9452 ax-distr 9453 ax-i2m1 9454 ax-1ne0 9455 ax-1rid 9456 ax-rnegex 9457 ax-rrecex 9458 ax-cnre 9459 ax-pre-lttri 9460 ax-pre-lttrn 9461 ax-pre-ltadd 9462 ax-pre-mulgt0 9463 ax-pre-sup 9464 ax-addf 9465 ax-mulf 9466 ax-hilex 24546 ax-hfvadd 24547 ax-hvcom 24548 ax-hvass 24549 ax-hv0cl 24550 ax-hvaddid 24551 ax-hfvmul 24552 ax-hvmulid 24553 ax-hvmulass 24554 ax-hvdistr1 24555 ax-hvdistr2 24556 ax-hvmul0 24557 ax-hfi 24626 ax-his1 24629 ax-his2 24630 ax-his3 24631 ax-his4 24632 ax-hcompl 24749 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-fal 1376 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-nel 2647 df-ral 2800 df-rex 2801 df-reu 2802 df-rmo 2803 df-rab 2804 df-v 3073 df-sbc 3288 df-csb 3390 df-dif 3432 df-un 3434 df-in 3436 df-ss 3443 df-pss 3445 df-nul 3739 df-if 3893 df-pw 3963 df-sn 3979 df-pr 3981 df-tp 3983 df-op 3985 df-uni 4193 df-int 4230 df-iun 4274 df-iin 4275 df-br 4394 df-opab 4452 df-mpt 4453 df-tr 4487 df-eprel 4733 df-id 4737 df-po 4742 df-so 4743 df-fr 4780 df-se 4781 df-we 4782 df-ord 4823 df-on 4824 df-lim 4825 df-suc 4826 df-xp 4947 df-rel 4948 df-cnv 4949 df-co 4950 df-dm 4951 df-rn 4952 df-res 4953 df-ima 4954 df-iota 5482 df-fun 5521 df-fn 5522 df-f 5523 df-f1 5524 df-fo 5525 df-f1o 5526 df-fv 5527 df-isom 5528 df-riota 6154 df-ov 6196 df-oprab 6197 df-mpt2 6198 df-of 6423 df-om 6580 df-1st 6680 df-2nd 6681 df-supp 6794 df-recs 6935 df-rdg 6969 df-1o 7023 df-2o 7024 df-oadd 7027 df-omul 7028 df-er 7204 df-map 7319 df-pm 7320 df-ixp 7367 df-en 7414 df-dom 7415 df-sdom 7416 df-fin 7417 df-fsupp 7725 df-fi 7765 df-sup 7795 df-oi 7828 df-card 8213 df-acn 8216 df-cda 8441 df-pnf 9524 df-mnf 9525 df-xr 9526 df-ltxr 9527 df-le 9528 df-sub 9701 df-neg 9702 df-div 10098 df-nn 10427 df-2 10484 df-3 10485 df-4 10486 df-5 10487 df-6 10488 df-7 10489 df-8 10490 df-9 10491 df-10 10492 df-n0 10684 df-z 10751 df-dec 10860 df-uz 10966 df-q 11058 df-rp 11096 df-xneg 11193 df-xadd 11194 df-xmul 11195 df-ioo 11408 df-ico 11410 df-icc 11411 df-fz 11548 df-fzo 11659 df-fl 11752 df-seq 11917 df-exp 11976 df-hash 12214 df-cj 12699 df-re 12700 df-im 12701 df-sqr 12835 df-abs 12836 df-clim 13077 df-rlim 13078 df-sum 13275 df-struct 14287 df-ndx 14288 df-slot 14289 df-base 14290 df-sets 14291 df-ress 14292 df-plusg 14362 df-mulr 14363 df-starv 14364 df-sca 14365 df-vsca 14366 df-ip 14367 df-tset 14368 df-ple 14369 df-ds 14371 df-unif 14372 df-hom 14373 df-cco 14374 df-rest 14472 df-topn 14473 df-0g 14491 df-gsum 14492 df-topgen 14493 df-pt 14494 df-prds 14497 df-xrs 14551 df-qtop 14556 df-imas 14557 df-xps 14559 df-mre 14635 df-mrc 14636 df-acs 14638 df-mnd 15526 df-submnd 15576 df-mulg 15659 df-cntz 15946 df-cmn 16392 df-psmet 17927 df-xmet 17928 df-met 17929 df-bl 17930 df-mopn 17931 df-fbas 17932 df-fg 17933 df-cnfld 17937 df-top 18628 df-bases 18630 df-topon 18631 df-topsp 18632 df-cld 18748 df-ntr 18749 df-cls 18750 df-nei 18827 df-cn 18956 df-cnp 18957 df-lm 18958 df-haus 19044 df-tx 19260 df-hmeo 19453 df-fil 19544 df-fm 19636 df-flim 19637 df-flf 19638 df-xms 20020 df-ms 20021 df-tms 20022 df-cfil 20891 df-cau 20892 df-cmet 20893 df-grpo 23823 df-gid 23824 df-ginv 23825 df-gdiv 23826 df-ablo 23914 df-subgo 23934 df-vc 24069 df-nv 24115 df-va 24118 df-ba 24119 df-sm 24120 df-0v 24121 df-vs 24122 df-nmcv 24123 df-ims 24124 df-dip 24241 df-ssp 24265 df-ph 24358 df-cbn 24409 df-hnorm 24515 df-hba 24516 df-hvsub 24518 df-hlim 24519 df-hcau 24520 df-sh 24754 df-ch 24769 df-oc 24800 df-ch0 24801 df-shs 24856 df-chj 24858 df-md 25829 |
This theorem is referenced by: ssdmd1 25862 atmd2 25949 mdsymi 25960 |
Copyright terms: Public domain | W3C validator |