MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssimaex Structured version   Unicode version

Theorem ssimaex 5890
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1  |-  A  e. 
_V
Assertion
Ref Expression
ssimaex  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ssimaex
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5087 . . . . 5  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21imaeq2i 5128 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " ( A  i^i  dom  F )
)
3 imadmres 5289 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " A
)
42, 3eqtr3i 2452 . . 3  |-  ( F
" ( A  i^i  dom 
F ) )  =  ( F " A
)
54sseq2i 3432 . 2  |-  ( B 
C_  ( F "
( A  i^i  dom  F ) )  <->  B  C_  ( F " A ) )
6 ssrab2 3489 . . . 4  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  ( A  i^i  dom  F
)
7 ssel2 3402 . . . . . . . . 9  |-  ( ( B  C_  ( F " ( A  i^i  dom  F ) )  /\  z  e.  B )  ->  z  e.  ( F " ( A  i^i  dom  F )
) )
87adantll 718 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" ( A  i^i  dom 
F ) ) )
9 fvelima 5877 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  z  e.  ( F " ( A  i^i  dom  F )
) )  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z )
109ex 435 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z ) )
1110adantr 466 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  ->  E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z ) )
12 eleq1a 2501 . . . . . . . . . . . . . . . 16  |-  ( z  e.  B  ->  (
( F `  w
)  =  z  -> 
( F `  w
)  e.  B ) )
1312anim2d 567 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) ) )
14 fveq2 5825 . . . . . . . . . . . . . . . . 17  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
1514eleq1d 2490 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
( F `  y
)  e.  B  <->  ( F `  w )  e.  B
) )
1615elrab 3171 . . . . . . . . . . . . . . 15  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  <->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) )
1713, 16syl6ibr 230 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
18 simpr 462 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  =  z )  ->  ( F `  w )  =  z )
1918a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( F `  w )  =  z ) )
2017, 19jcad 535 . . . . . . . . . . . . 13  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  /\  ( F `  w )  =  z ) ) )
2120reximdv2 2835 . . . . . . . . . . . 12  |-  ( z  e.  B  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2221adantl 467 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
23 funfn 5573 . . . . . . . . . . . . 13  |-  ( Fun 
F  <->  F  Fn  dom  F )
24 inss2 3626 . . . . . . . . . . . . . . 15  |-  ( A  i^i  dom  F )  C_ 
dom  F
256, 24sstri 3416 . . . . . . . . . . . . . 14  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  dom  F
26 fvelimab 5881 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  dom  F  /\  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  dom  F )  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2725, 26mpan2 675 . . . . . . . . . . . . 13  |-  ( F  Fn  dom  F  -> 
( z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2823, 27sylbi 198 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2928adantr 466 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
3022, 29sylibrd 237 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3111, 30syld 45 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3231adantlr 719 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
338, 32mpd 15 . . . . . . 7  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )
3433ex 435 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
35 fvelima 5877 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z )
3635ex 435 . . . . . . . 8  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
37 eleq1 2494 . . . . . . . . . . . 12  |-  ( ( F `  w )  =  z  ->  (
( F `  w
)  e.  B  <->  z  e.  B ) )
3837biimpcd 227 . . . . . . . . . . 11  |-  ( ( F `  w )  e.  B  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
3938adantl 467 . . . . . . . . . 10  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  e.  B )  ->  ( ( F `
 w )  =  z  ->  z  e.  B ) )
4016, 39sylbi 198 . . . . . . . . 9  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
4140rexlimiv 2850 . . . . . . . 8  |-  ( E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z  ->  z  e.  B )
4236, 41syl6 34 . . . . . . 7  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  z  e.  B ) )
4342adantr 466 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  -> 
z  e.  B ) )
4434, 43impbid 193 . . . . 5  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  <->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
4544eqrdv 2426 . . . 4  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  B  =  ( F " { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B } ) )
46 ssimaex.1 . . . . . . 7  |-  A  e. 
_V
4746inex1 4508 . . . . . 6  |-  ( A  i^i  dom  F )  e.  _V
4847rabex 4518 . . . . 5  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  e.  _V
49 sseq1 3428 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
x  C_  ( A  i^i  dom  F )  <->  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )
) )
50 imaeq2 5126 . . . . . . 7  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( F " x )  =  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
5150eqeq2d 2438 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( B  =  ( F " x )  <->  B  =  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
5249, 51anbi12d 715 . . . . 5  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  <-> 
( { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) ) )
5348, 52spcev 3116 . . . 4  |-  ( ( { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )  ->  E. x ( x 
C_  ( A  i^i  dom 
F )  /\  B  =  ( F "
x ) ) )
546, 45, 53sylancr 667 . . 3  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) ) )
55 inss1 3625 . . . . . 6  |-  ( A  i^i  dom  F )  C_  A
56 sstr 3415 . . . . . 6  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  ( A  i^i  dom  F
)  C_  A )  ->  x  C_  A )
5755, 56mpan2 675 . . . . 5  |-  ( x 
C_  ( A  i^i  dom 
F )  ->  x  C_  A )
5857anim1i 570 . . . 4  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  -> 
( x  C_  A  /\  B  =  ( F " x ) ) )
5958eximi 1701 . . 3  |-  ( E. x ( x  C_  ( A  i^i  dom  F
)  /\  B  =  ( F " x ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
6054, 59syl 17 . 2  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
615, 60sylan2br 478 1  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872   E.wrex 2715   {crab 2718   _Vcvv 3022    i^i cin 3378    C_ wss 3379   dom cdm 4796    |` cres 4798   "cima 4799   Fun wfun 5538    Fn wfn 5539   ` cfv 5544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-fv 5552
This theorem is referenced by:  ssimaexg  5891
  Copyright terms: Public domain W3C validator