HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Unicode version

Theorem sshjval3 22809
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice  CH. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 22455 . . . . . 6  |-  ~H  e.  _V
21elpw2 4324 . . . . 5  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
31elpw2 4324 . . . . 5  |-  ( B  e.  ~P ~H  <->  B  C_  ~H )
4 uniprg 3990 . . . . 5  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  U. { A ,  B }  =  ( A  u.  B )
)
52, 3, 4syl2anbr 467 . . . 4  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  U. { A ,  B }  =  ( A  u.  B ) )
65fveq2d 5691 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  U. { A ,  B } )  =  ( _|_ `  ( A  u.  B )
) )
76fveq2d 5691 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  ( _|_ `  U. { A ,  B }
) )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) ) )
8 prssi 3914 . . . 4  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  { A ,  B }  C_  ~P ~H )
92, 3, 8syl2anbr 467 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  { A ,  B }  C_  ~P ~H )
10 hsupval 22789 . . 3  |-  ( { A ,  B }  C_ 
~P ~H  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
119, 10syl 16 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
12 sshjval 22805 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
137, 11, 123eqtr4rd 2447 1  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    u. cun 3278    C_ wss 3280   ~Pcpw 3759   {cpr 3775   U.cuni 3975   ` cfv 5413  (class class class)co 6040   ~Hchil 22375   _|_cort 22386    vH chj 22389    \/H chsup 22390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-hilex 22455
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-chj 22765  df-chsup 22766
  Copyright terms: Public domain W3C validator