MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12bi Structured version   Unicode version

Theorem ssfzo12bi 12003
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  <->  ( M  <_  K  /\  L  <_  N
) ) )

Proof of Theorem ssfzo12bi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 984 . . . . 5  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  <->  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  K  <  L ) )
21biimpri 209 . . . 4  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  K  <  L
)  ->  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )
323adant2 1024 . . 3  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )
4 ssfzo12 12001 . . 3  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
53, 4syl 17 . 2  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
6 elfzo2 11921 . . . . . 6  |-  ( x  e.  ( K..^ L
)  <->  ( x  e.  ( ZZ>= `  K )  /\  L  e.  ZZ  /\  x  <  L ) )
7 eluz2 11165 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x ) )
8 simprrl 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  ZZ )
98adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  M  e.  ZZ )
10 simpll 758 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  x  e.  ZZ )
11 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1312adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  RR )
1413adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  M  e.  RR )
15 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( K  e.  ZZ  ->  K  e.  RR )
1615adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  RR )
1716adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  RR )
1817adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  K  e.  RR )
19 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  ZZ  ->  x  e.  RR )
2019adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  x  e.  RR )
21 letr 9726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  x  e.  RR )  ->  (
( M  <_  K  /\  K  <_  x )  ->  M  <_  x
) )
2214, 18, 20, 21syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  ->  ( ( M  <_  K  /\  K  <_  x )  ->  M  <_  x ) )
2322imp 430 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  M  <_  x )
249, 10, 233jca 1185 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e.  ZZ  /\  ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )  /\  ( M  <_  K  /\  K  <_  x
) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
2524exp31 607 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ZZ  ->  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( M  <_  K  /\  K  <_  x
)  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2625com23 81 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ZZ  ->  (
( M  <_  K  /\  K  <_  x )  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2726expdimp 438 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ZZ  /\  M  <_  K )  -> 
( K  <_  x  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2827impancom 441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( M  <_  K  ->  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
2928com13 83 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  <_  K  ->  ( ( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
30293adant3 1025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( M  <_  K  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3130com12 32 . . . . . . . . . . . . . . . . . 18  |-  ( M  <_  K  ->  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3231adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( M  <_  K  /\  L  <_  N )  -> 
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) ) )
3332impcom 431 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( ( x  e.  ZZ  /\  K  <_  x )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3433com12 32 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3534adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) ) )
3635imp 430 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
37 eluz2 11165 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  x  e.  ZZ  /\  M  <_  x ) )
3836, 37sylibr 215 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  e.  (
ZZ>= `  M ) )
39 simpl2r 1059 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  N  e.  ZZ )
4039adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  N  e.  ZZ )
4119adantl 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
42 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  ZZ  ->  L  e.  RR )
4342ad3antlr 735 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  L  e.  RR )
44 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  ZZ  ->  N  e.  RR )
4544adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
4645adantl 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  RR )
4746adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  N  e.  RR )
48 ltletr 9724 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  RR  /\  L  e.  RR  /\  N  e.  RR )  ->  (
( x  <  L  /\  L  <_  N )  ->  x  <  N
) )
4941, 43, 47, 48syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  /\  x  e.  ZZ )  ->  ( ( x  < 
L  /\  L  <_  N )  ->  x  <  N ) )
5049ex 435 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( x  e.  ZZ  ->  ( ( x  < 
L  /\  L  <_  N )  ->  x  <  N ) ) )
5150com23 81 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( x  < 
L  /\  L  <_  N )  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
52513adant3 1025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( x  <  L  /\  L  <_  N )  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
5352expcomd 439 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  ( L  <_  N  ->  (
x  <  L  ->  ( x  e.  ZZ  ->  x  <  N ) ) ) )
5453adantld 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( M  <_  K  /\  L  <_  N )  ->  ( x  < 
L  ->  ( x  e.  ZZ  ->  x  <  N ) ) ) )
5554imp 430 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( x  <  L  ->  ( x  e.  ZZ  ->  x  <  N ) ) )
5655com13 83 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) ) )
5756adantr 466 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) ) )
5857imp 430 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  <  N ) )
5958imp 430 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  <  N
)
60 elfzo2 11921 . . . . . . . . . . . 12  |-  ( x  e.  ( M..^ N
)  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  x  <  N ) )
6138, 40, 59, 60syl3anbrc 1189 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  K  <_  x )  /\  x  <  L )  /\  (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) ) )  ->  x  e.  ( M..^ N ) )
6261exp31 607 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  K  <_  x )  -> 
( x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L
)  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
63623adant1 1023 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x )  ->  (
x  <  L  ->  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
647, 63sylbi 198 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  K
)  ->  ( x  <  L  ->  ( (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) ) )
6564imp 430 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  K )  /\  x  <  L )  ->  (
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
66653adant2 1024 . . . . . 6  |-  ( ( x  e.  ( ZZ>= `  K )  /\  L  e.  ZZ  /\  x  < 
L )  ->  (
( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
676, 66sylbi 198 . . . . 5  |-  ( x  e.  ( K..^ L
)  ->  ( (
( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  ->  x  e.  ( M..^ N ) ) )
6867com12 32 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( x  e.  ( K..^ L )  ->  x  e.  ( M..^ N ) ) )
6968ssrdv 3476 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  /\  ( M  <_  K  /\  L  <_  N ) )  -> 
( K..^ L ) 
C_  ( M..^ N
) )
7069ex 435 . 2  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( M  <_  K  /\  L  <_  N )  ->  ( K..^ L
)  C_  ( M..^ N ) ) )
715, 70impbid 193 1  |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  <->  ( M  <_  K  /\  L  <_  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1870    C_ wss 3442   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   RRcr 9537    < clt 9674    <_ cle 9675   ZZcz 10937   ZZ>=cuz 11159  ..^cfzo 11913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-fzo 11914
This theorem is referenced by:  swrdnd  12773  repswswrd  12872  iccpartgt  38131
  Copyright terms: Public domain W3C validator