MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin3ds Structured version   Unicode version

Theorem ssfin3ds 8722
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypothesis
Ref Expression
isfin3ds.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
ssfin3ds  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  e.  F )
Distinct variable groups:    a, b,
g, A    B, a,
b, g
Allowed substitution hints:    F( g, a, b)

Proof of Theorem ssfin3ds
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4637 . . . . 5  |-  ( A  e.  F  ->  ~P A  e.  _V )
21adantr 465 . . . 4  |-  ( ( A  e.  F  /\  B  C_  A )  ->  ~P A  e.  _V )
3 simpr 461 . . . . 5  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  C_  A )
4 sspwb 4702 . . . . 5  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
53, 4sylib 196 . . . 4  |-  ( ( A  e.  F  /\  B  C_  A )  ->  ~P B  C_  ~P A
)
6 mapss 7473 . . . 4  |-  ( ( ~P A  e.  _V  /\ 
~P B  C_  ~P A )  ->  ( ~P B  ^m  om )  C_  ( ~P A  ^m  om ) )
72, 5, 6syl2anc 661 . . 3  |-  ( ( A  e.  F  /\  B  C_  A )  -> 
( ~P B  ^m  om )  C_  ( ~P A  ^m  om ) )
8 isfin3ds.f . . . . . 6  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a ) }
98isfin3ds 8721 . . . . 5  |-  ( A  e.  F  ->  ( A  e.  F  <->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
109ibi 241 . . . 4  |-  ( A  e.  F  ->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
1110adantr 465 . . 3  |-  ( ( A  e.  F  /\  B  C_  A )  ->  A. f  e.  ( ~P A  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
12 ssralv 3569 . . 3  |-  ( ( ~P B  ^m  om )  C_  ( ~P A  ^m  om )  ->  ( A. f  e.  ( ~P A  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f )  ->  A. f  e.  ( ~P B  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
137, 11, 12sylc 60 . 2  |-  ( ( A  e.  F  /\  B  C_  A )  ->  A. f  e.  ( ~P B  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
14 ssexg 4599 . . . 4  |-  ( ( B  C_  A  /\  A  e.  F )  ->  B  e.  _V )
1514ancoms 453 . . 3  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  e.  _V )
168isfin3ds 8721 . . 3  |-  ( B  e.  _V  ->  ( B  e.  F  <->  A. f  e.  ( ~P B  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
1715, 16syl 16 . 2  |-  ( ( A  e.  F  /\  B  C_  A )  -> 
( B  e.  F  <->  A. f  e.  ( ~P B  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
1813, 17mpbird 232 1  |-  ( ( A  e.  F  /\  B  C_  A )  ->  B  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2817   _Vcvv 3118    C_ wss 3481   ~Pcpw 4016   |^|cint 4288   suc csuc 4886   ran crn 5006   ` cfv 5594  (class class class)co 6295   omcom 6695    ^m cmap 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-map 7434
This theorem is referenced by:  fin23lem31  8735
  Copyright terms: Public domain W3C validator