MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscls Structured version   Unicode version

Theorem sscls 20069
Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
sscls  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )

Proof of Theorem sscls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssintub 4273 . 2  |-  S  C_  |^|
{ x  e.  (
Clsd `  J )  |  S  C_  x }
2 clscld.1 . . 3  |-  X  = 
U. J
32clsval 20050 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
41, 3syl5sseqr 3513 1  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   {crab 2775    C_ wss 3436   U.cuni 4219   |^|cint 4255   ` cfv 5601   Topctop 19915   Clsdccld 20029   clsccl 20031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-top 19919  df-cld 20032  df-cls 20034
This theorem is referenced by:  iscld4  20079  elcls  20087  ntrcls0  20090  clslp  20162  restcls  20195  cncls2i  20284  nrmsep  20371  lpcls  20378  regsep2  20390  hauscmplem  20419  hauscmp  20420  clscon  20443  concompcld  20447  hausllycmp  20507  txcls  20617  ptclsg  20628  regr1lem  20752  kqreglem1  20754  kqreglem2  20755  kqnrmlem1  20756  kqnrmlem2  20757  fclscmpi  21042  flfcntr  21056  cnextfres  21082  clssubg  21121  tsmsid  21152  cnllycmp  21982  clsocv  22219  relcmpcmet  22284  bcthlem2  22291  bcthlem4  22293  limcnlp  22831  opnbnd  30986  opnregcld  30991  cldregopn  30992  heibor1lem  32105  heiborlem8  32114
  Copyright terms: Public domain W3C validator