MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Unicode version

Theorem sscfn2 14835
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1  |-  ( ph  ->  H  C_cat  J )
sscfn2.2  |-  ( ph  ->  T  =  dom  dom  J )
Assertion
Ref Expression
sscfn2  |-  ( ph  ->  J  Fn  ( T  X.  T ) )

Proof of Theorem sscfn2
Dummy variables  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3  |-  ( ph  ->  H  C_cat  J )
2 brssc 14831 . . 3  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. y  e.  ~P  t H  e.  X_ x  e.  ( y  X.  y
) ~P ( J `
 x ) ) )
31, 2sylib 196 . 2  |-  ( ph  ->  E. t ( J  Fn  ( t  X.  t )  /\  E. y  e.  ~P  t H  e.  X_ x  e.  ( y  X.  y
) ~P ( J `
 x ) ) )
4 simpr 461 . . . . . 6  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  J  Fn  ( t  X.  t
) )
5 sscfn2.2 . . . . . . . . . 10  |-  ( ph  ->  T  =  dom  dom  J )
65adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  T  =  dom  dom  J )
7 fndm 5610 . . . . . . . . . . . 12  |-  ( J  Fn  ( t  X.  t )  ->  dom  J  =  ( t  X.  t ) )
87adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  J  =  ( t  X.  t ) )
98dmeqd 5142 . . . . . . . . . 10  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  dom 
J  =  dom  (
t  X.  t ) )
10 dmxpid 5159 . . . . . . . . . 10  |-  dom  (
t  X.  t )  =  t
119, 10syl6eq 2508 . . . . . . . . 9  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  dom 
J  =  t )
126, 11eqtr2d 2493 . . . . . . . 8  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  t  =  T )
1312, 12xpeq12d 4965 . . . . . . 7  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  (
t  X.  t )  =  ( T  X.  T ) )
1413fneq2d 5602 . . . . . 6  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  ( J  Fn  ( t  X.  t )  <->  J  Fn  ( T  X.  T
) ) )
154, 14mpbid 210 . . . . 5  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  J  Fn  ( T  X.  T
) )
1615ex 434 . . . 4  |-  ( ph  ->  ( J  Fn  (
t  X.  t )  ->  J  Fn  ( T  X.  T ) ) )
1716adantrd 468 . . 3  |-  ( ph  ->  ( ( J  Fn  ( t  X.  t
)  /\  E. y  e.  ~P  t H  e.  X_ x  e.  (
y  X.  y ) ~P ( J `  x ) )  ->  J  Fn  ( T  X.  T ) ) )
1817exlimdv 1691 . 2  |-  ( ph  ->  ( E. t ( J  Fn  ( t  X.  t )  /\  E. y  e.  ~P  t H  e.  X_ x  e.  ( y  X.  y
) ~P ( J `
 x ) )  ->  J  Fn  ( T  X.  T ) ) )
193, 18mpd 15 1  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2796   ~Pcpw 3960   class class class wbr 4392    X. cxp 4938   dom cdm 4940    Fn wfn 5513   ` cfv 5518   X_cixp 7365    C_cat cssc 14824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ixp 7366  df-ssc 14827
This theorem is referenced by:  ssc2  14839  ssctr  14842
  Copyright terms: Public domain W3C validator