Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssabral Structured version   Unicode version

Theorem ssabral 3576
 Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
Assertion
Ref Expression
ssabral
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem ssabral
StepHypRef Expression
1 ssab 3575 . 2
2 df-ral 2822 . 2
31, 2bitr4i 252 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1377   wcel 1767  cab 2452  wral 2817   wss 3481 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-in 3488  df-ss 3495 This theorem is referenced by:  comppfsc  19878  txdis1cn  19981  qustgplem  20464  xrhmeo  21291  cncmet  21606  itg1addlem4  21951  subfacp1lem6  28422  istotbnd3  30162  sstotbnd  30166  heibor1lem  30200  heibor1  30201
 Copyright terms: Public domain W3C validator