MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2iun Unicode version

Theorem ss2iun 4068
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )

Proof of Theorem ss2iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3302 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2741 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rexim 2770 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C )
)
42, 3syl 16 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C ) )
5 eliun 4057 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
6 eliun 4057 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
74, 5, 63imtr4g 262 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( y  e.  U_ x  e.  A  B  ->  y  e.  U_ x  e.  A  C
) )
87ssrdv 3314 1  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   U_ciun 4053
This theorem is referenced by:  iuneq2  4069  oawordri  6752  omwordri  6774  oewordri  6794  oeworde  6795  r1val1  7668  cfslb2n  8104  imasaddvallem  13709  dprdss  15542  tgcmp  17418  txcmplem1  17626  txcmplem2  17627  xkococnlem  17644  alexsubALT  18035  ptcmplem3  18038  metnrmlem2  18843  uniiccvol  19425  dvfval  19737  filnetlem3  26299  sstotbnd2  26373  equivtotbnd  26377  bnj1145  29068  bnj1136  29072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-v 2918  df-in 3287  df-ss 3294  df-iun 4055
  Copyright terms: Public domain W3C validator