MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgrmhm Structured version   Unicode version

Theorem srgrmhm 17300
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 17364. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b  |-  B  =  ( Base `  R
)
srglmhm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgrmhm  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R ) )
Distinct variable groups:    x, B    x, R    x, X    x,  .x.

Proof of Theorem srgrmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 17274 . . . 4  |-  ( R  e. SRing  ->  R  e.  Mnd )
21, 1jca 530 . . 3  |-  ( R  e. SRing  ->  ( R  e. 
Mnd  /\  R  e.  Mnd ) )
32adantr 463 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( R  e.  Mnd  /\  R  e.  Mnd ) )
4 srglmhm.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 srglmhm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
64, 5srgcl 17277 . . . . . 6  |-  ( ( R  e. SRing  /\  x  e.  B  /\  X  e.  B )  ->  (
x  .x.  X )  e.  B )
763com23 1200 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B  /\  x  e.  B )  ->  (
x  .x.  X )  e.  B )
873expa 1194 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  x  e.  B )  ->  (
x  .x.  X )  e.  B )
9 eqid 2382 . . . 4  |-  ( x  e.  B  |->  ( x 
.x.  X ) )  =  ( x  e.  B  |->  ( x  .x.  X ) )
108, 9fmptd 5957 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) ) : B --> B )
11 3anrot 976 . . . . . . . 8  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( a  e.  B  /\  b  e.  B  /\  X  e.  B )
)
12 3anass 975 . . . . . . . 8  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
1311, 12bitr3i 251 . . . . . . 7  |-  ( ( a  e.  B  /\  b  e.  B  /\  X  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
14 eqid 2382 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
154, 14, 5srgdir 17281 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B  /\  X  e.  B )
)  ->  ( (
a ( +g  `  R
) b )  .x.  X )  =  ( ( a  .x.  X
) ( +g  `  R
) ( b  .x.  X ) ) )
1613, 15sylan2br 474 . . . . . 6  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )  -> 
( ( a ( +g  `  R ) b )  .x.  X
)  =  ( ( a  .x.  X ) ( +g  `  R
) ( b  .x.  X ) ) )
1716anassrs 646 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
a ( +g  `  R
) b )  .x.  X )  =  ( ( a  .x.  X
) ( +g  `  R
) ( b  .x.  X ) ) )
184, 14srgacl 17288 . . . . . . . 8  |-  ( ( R  e. SRing  /\  a  e.  B  /\  b  e.  B )  ->  (
a ( +g  `  R
) b )  e.  B )
19183expb 1195 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
2019adantlr 712 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
21 oveq1 6203 . . . . . . 7  |-  ( x  =  ( a ( +g  `  R ) b )  ->  (
x  .x.  X )  =  ( ( a ( +g  `  R
) b )  .x.  X ) )
22 ovex 6224 . . . . . . 7  |-  ( ( a ( +g  `  R
) b )  .x.  X )  e.  _V
2321, 9, 22fvmpt 5857 . . . . . 6  |-  ( ( a ( +g  `  R
) b )  e.  B  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( a ( +g  `  R
) b )  .x.  X ) )
2420, 23syl 16 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( a ( +g  `  R
) b )  .x.  X ) )
25 oveq1 6203 . . . . . . . 8  |-  ( x  =  a  ->  (
x  .x.  X )  =  ( a  .x.  X ) )
26 ovex 6224 . . . . . . . 8  |-  ( a 
.x.  X )  e. 
_V
2725, 9, 26fvmpt 5857 . . . . . . 7  |-  ( a  e.  B  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  a
)  =  ( a 
.x.  X ) )
28 oveq1 6203 . . . . . . . 8  |-  ( x  =  b  ->  (
x  .x.  X )  =  ( b  .x.  X ) )
29 ovex 6224 . . . . . . . 8  |-  ( b 
.x.  X )  e. 
_V
3028, 9, 29fvmpt 5857 . . . . . . 7  |-  ( b  e.  B  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  b
)  =  ( b 
.x.  X ) )
3127, 30oveqan12d 6215 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  b ) )  =  ( ( a  .x.  X ) ( +g  `  R ) ( b 
.x.  X ) ) )
3231adantl 464 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
( x  e.  B  |->  ( x  .x.  X
) ) `  a
) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 b ) )  =  ( ( a 
.x.  X ) ( +g  `  R ) ( b  .x.  X
) ) )
3317, 24, 323eqtr4d 2433 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( x  .x.  X ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 b ) ) )
3433ralrimivva 2803 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  A. a  e.  B  A. b  e.  B  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( x  .x.  X ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 b ) ) )
35 eqid 2382 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
364, 35srg0cl 17283 . . . . . 6  |-  ( R  e. SRing  ->  ( 0g `  R )  e.  B
)
3736adantr 463 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( 0g `  R )  e.  B )
38 oveq1 6203 . . . . . 6  |-  ( x  =  ( 0g `  R )  ->  (
x  .x.  X )  =  ( ( 0g
`  R )  .x.  X ) )
39 ovex 6224 . . . . . 6  |-  ( ( 0g `  R ) 
.x.  X )  e. 
_V
4038, 9, 39fvmpt 5857 . . . . 5  |-  ( ( 0g `  R )  e.  B  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  ( 0g `  R ) )  =  ( ( 0g
`  R )  .x.  X ) )
4137, 40syl 16 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  ( 0g `  R ) )  =  ( ( 0g
`  R )  .x.  X ) )
424, 5, 35srglz 17291 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( 0g `  R
)  .x.  X )  =  ( 0g `  R ) )
4341, 42eqtrd 2423 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  ( 0g `  R ) )  =  ( 0g `  R ) )
4410, 34, 433jca 1174 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) )
454, 4, 14, 14, 35, 35ismhm 16085 . 2  |-  ( ( x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R )  <->  ( ( R  e.  Mnd  /\  R  e.  Mnd )  /\  (
( x  e.  B  |->  ( x  .x.  X
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) ) )
463, 44, 45sylanbrc 662 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   A.wral 2732    |-> cmpt 4425   -->wf 5492   ` cfv 5496  (class class class)co 6196   Basecbs 14634   +g cplusg 14702   .rcmulr 14703   0gc0g 14847   Mndcmnd 16036   MndHom cmhm 16081  SRingcsrg 17270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-recs 6960  df-rdg 6994  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-plusg 14715  df-0g 14849  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-mhm 16083  df-cmn 16917  df-mgp 17255  df-srg 17271
This theorem is referenced by:  srgsummulcr  17301
  Copyright terms: Public domain W3C validator