MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgpcomp Structured version   Unicode version

Theorem srgpcomp 16738
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
Assertion
Ref Expression
srgpcomp  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )

Proof of Theorem srgpcomp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2  |-  ( ph  ->  K  e.  NN0 )
2 oveq1 6199 . . . . . 6  |-  ( x  =  0  ->  (
x  .^  B )  =  ( 0  .^  B ) )
32oveq1d 6207 . . . . 5  |-  ( x  =  0  ->  (
( x  .^  B
)  .X.  A )  =  ( ( 0 
.^  B )  .X.  A ) )
42oveq2d 6208 . . . . 5  |-  ( x  =  0  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
0  .^  B )
) )
53, 4eqeq12d 2473 . . . 4  |-  ( x  =  0  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
0  .^  B )  .X.  A )  =  ( A  .X.  ( 0 
.^  B ) ) ) )
65imbi2d 316 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( 0  .^  B )  .X.  A )  =  ( A  .X.  ( 0 
.^  B ) ) ) ) )
7 oveq1 6199 . . . . . 6  |-  ( x  =  y  ->  (
x  .^  B )  =  ( y  .^  B ) )
87oveq1d 6207 . . . . 5  |-  ( x  =  y  ->  (
( x  .^  B
)  .X.  A )  =  ( ( y 
.^  B )  .X.  A ) )
97oveq2d 6208 . . . . 5  |-  ( x  =  y  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
y  .^  B )
) )
108, 9eqeq12d 2473 . . . 4  |-  ( x  =  y  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
y  .^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) ) )
1110imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( y  .^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) ) ) )
12 oveq1 6199 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .^  B )  =  ( ( y  +  1 )  .^  B ) )
1312oveq1d 6207 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( x  .^  B
)  .X.  A )  =  ( ( ( y  +  1 ) 
.^  B )  .X.  A ) )
1412oveq2d 6208 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
( y  +  1 )  .^  B )
) )
1513, 14eqeq12d 2473 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) ) )
1615imbi2d 316 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( ( y  +  1 )  .^  B )  .X.  A )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) ) ) )
17 oveq1 6199 . . . . . 6  |-  ( x  =  K  ->  (
x  .^  B )  =  ( K  .^  B ) )
1817oveq1d 6207 . . . . 5  |-  ( x  =  K  ->  (
( x  .^  B
)  .X.  A )  =  ( ( K 
.^  B )  .X.  A ) )
1917oveq2d 6208 . . . . 5  |-  ( x  =  K  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  ( K  .^  B ) ) )
2018, 19eqeq12d 2473 . . . 4  |-  ( x  =  K  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) ) )
2120imbi2d 316 . . 3  |-  ( x  =  K  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) ) ) )
22 srgpcomp.b . . . . . 6  |-  ( ph  ->  B  e.  S )
23 srgpcomp.g . . . . . . . 8  |-  G  =  (mulGrp `  R )
24 srgpcomp.s . . . . . . . 8  |-  S  =  ( Base `  R
)
2523, 24mgpbas 16704 . . . . . . 7  |-  S  =  ( Base `  G
)
26 eqid 2451 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
2723, 26rngidval 16712 . . . . . . 7  |-  ( 1r
`  R )  =  ( 0g `  G
)
28 srgpcomp.e . . . . . . 7  |-  .^  =  (.g
`  G )
2925, 27, 28mulg0 15736 . . . . . 6  |-  ( B  e.  S  ->  (
0  .^  B )  =  ( 1r `  R ) )
3022, 29syl 16 . . . . 5  |-  ( ph  ->  ( 0  .^  B
)  =  ( 1r
`  R ) )
3130oveq1d 6207 . . . 4  |-  ( ph  ->  ( ( 0  .^  B )  .X.  A
)  =  ( ( 1r `  R ) 
.X.  A ) )
32 srgpcomp.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
33 srgpcomp.a . . . . . 6  |-  ( ph  ->  A  e.  S )
34 srgpcomp.m . . . . . . 7  |-  .X.  =  ( .r `  R )
3524, 34, 26srgridm 16730 . . . . . 6  |-  ( ( R  e. SRing  /\  A  e.  S )  ->  ( A  .X.  ( 1r `  R ) )  =  A )
3632, 33, 35syl2anc 661 . . . . 5  |-  ( ph  ->  ( A  .X.  ( 1r `  R ) )  =  A )
3730oveq2d 6208 . . . . 5  |-  ( ph  ->  ( A  .X.  (
0  .^  B )
)  =  ( A 
.X.  ( 1r `  R ) ) )
3824, 34, 26srglidm 16729 . . . . . 6  |-  ( ( R  e. SRing  /\  A  e.  S )  ->  (
( 1r `  R
)  .X.  A )  =  A )
3932, 33, 38syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( 1r `  R )  .X.  A
)  =  A )
4036, 37, 393eqtr4rd 2503 . . . 4  |-  ( ph  ->  ( ( 1r `  R )  .X.  A
)  =  ( A 
.X.  ( 0  .^  B ) ) )
4131, 40eqtrd 2492 . . 3  |-  ( ph  ->  ( ( 0  .^  B )  .X.  A
)  =  ( A 
.X.  ( 0  .^  B ) ) )
4223srgmgp 16719 . . . . . . . . . . . . 13  |-  ( R  e. SRing  ->  G  e.  Mnd )
4332, 42syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Mnd )
4443adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  G  e.  Mnd )
45 simpr 461 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  y  e.  NN0 )
4622adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  B  e.  S )
4723, 34mgpplusg 16702 . . . . . . . . . . . 12  |-  .X.  =  ( +g  `  G )
4825, 28, 47mulgnn0p1 15742 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  B  e.  S )  ->  (
( y  +  1 )  .^  B )  =  ( ( y 
.^  B )  .X.  B ) )
4944, 45, 46, 48syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B )  .X.  B
) )
5049oveq1d 6207 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  B
)  .X.  A )
)
51 srgpcomp.c . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
5251eqcomd 2459 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  .X.  A
)  =  ( A 
.X.  B ) )
5352adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( B  .X.  A )  =  ( A  .X.  B )
)
5453oveq2d 6208 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  .^  B )  .X.  ( B  .X.  A
) )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
5532adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  R  e. SRing )
5625, 28mulgnn0cl 15747 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  B  e.  S )  ->  (
y  .^  B )  e.  S )
5744, 45, 46, 56syl3anc 1219 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( y  .^  B )  e.  S
)
5833adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  A  e.  S )
5924, 34srgass 16722 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .^  B
)  e.  S  /\  B  e.  S  /\  A  e.  S )
)  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( y  .^  B
)  .X.  ( B  .X.  A ) ) )
6055, 57, 46, 58, 59syl13anc 1221 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( y  .^  B
)  .X.  ( B  .X.  A ) ) )
6124, 34srgass 16722 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .^  B
)  e.  S  /\  A  e.  S  /\  B  e.  S )
)  ->  ( (
( y  .^  B
)  .X.  A )  .X.  B )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
6255, 57, 58, 46, 61syl13anc 1221 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  A )  .X.  B )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
6354, 60, 623eqtr4d 2502 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  A
)  .X.  B )
)
6450, 63eqtrd 2492 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  A
)  .X.  B )
)
6564adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( ( ( y  .^  B
)  .X.  A )  .X.  B ) )
66 oveq1 6199 . . . . . . . 8  |-  ( ( ( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) )  ->  (
( ( y  .^  B )  .X.  A
)  .X.  B )  =  ( ( A 
.X.  ( y  .^  B ) )  .X.  B ) )
6724, 34srgass 16722 . . . . . . . . . 10  |-  ( ( R  e. SRing  /\  ( A  e.  S  /\  ( y  .^  B
)  e.  S  /\  B  e.  S )
)  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  .^  B )  .X.  B ) ) )
6855, 58, 57, 46, 67syl13anc 1221 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  .^  B )  .X.  B ) ) )
6949eqcomd 2459 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  .^  B )  .X.  B )  =  ( ( y  +  1 )  .^  B )
)
7069oveq2d 6208 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( A  .X.  ( ( y  .^  B )  .X.  B
) )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) )
7168, 70eqtrd 2492 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) )
7266, 71sylan9eqr 2514 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y 
.^  B )  .X.  A )  .X.  B
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) )
7365, 72eqtrd 2492 . . . . . 6  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) )
7473ex 434 . . . . 5  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) )  ->  (
( ( y  +  1 )  .^  B
)  .X.  A )  =  ( A  .X.  ( ( y  +  1 )  .^  B
) ) ) )
7574expcom 435 . . . 4  |-  ( y  e.  NN0  ->  ( ph  ->  ( ( ( y 
.^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) ) ) )
7675a2d 26 . . 3  |-  ( y  e.  NN0  ->  ( (
ph  ->  ( ( y 
.^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) )  ->  ( ph  ->  ( ( ( y  +  1 )  .^  B
)  .X.  A )  =  ( A  .X.  ( ( y  +  1 )  .^  B
) ) ) ) )
776, 11, 16, 21, 41, 76nn0ind 10841 . 2  |-  ( K  e.  NN0  ->  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) ) )
781, 77mpcom 36 1  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   ` cfv 5518  (class class class)co 6192   0cc0 9385   1c1 9386    + caddc 9388   NN0cn0 10682   Basecbs 14278   .rcmulr 14343   Mndcmnd 15513  .gcmg 15518  mulGrpcmgp 16698   1rcur 16710  SRingcsrg 16714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-2 10483  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-seq 11910  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-plusg 14355  df-0g 14484  df-mnd 15519  df-mulg 15652  df-mgp 16699  df-ur 16711  df-srg 16715
This theorem is referenced by:  srgpcompp  16739  mplcoe5lem  17656
  Copyright terms: Public domain W3C validator