MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srglmhm Structured version   Unicode version

Theorem srglmhm 17381
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 17445. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b  |-  B  =  ( Base `  R
)
srglmhm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srglmhm  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R ) )
Distinct variable groups:    x, B    x, R    x, X    x,  .x.

Proof of Theorem srglmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 17356 . . . 4  |-  ( R  e. SRing  ->  R  e.  Mnd )
21, 1jca 530 . . 3  |-  ( R  e. SRing  ->  ( R  e. 
Mnd  /\  R  e.  Mnd ) )
32adantr 463 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( R  e.  Mnd  /\  R  e.  Mnd ) )
4 srglmhm.b . . . . . 6  |-  B  =  ( Base `  R
)
5 srglmhm.t . . . . . 6  |-  .x.  =  ( .r `  R )
64, 5srgcl 17359 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1194 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
8 eqid 2454 . . . 4  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
97, 8fmptd 6031 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
10 3anass 975 . . . . . . 7  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
11 eqid 2454 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
124, 11, 5srgdi 17362 . . . . . . 7  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  =  ( ( X  .x.  a ) ( +g  `  R
) ( X  .x.  b ) ) )
1310, 12sylan2br 474 . . . . . 6  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )  -> 
( X  .x.  (
a ( +g  `  R
) b ) )  =  ( ( X 
.x.  a ) ( +g  `  R ) ( X  .x.  b
) ) )
1413anassrs 646 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( X  .x.  ( a ( +g  `  R ) b ) )  =  ( ( X  .x.  a ) ( +g  `  R
) ( X  .x.  b ) ) )
154, 11srgacl 17370 . . . . . . . 8  |-  ( ( R  e. SRing  /\  a  e.  B  /\  b  e.  B )  ->  (
a ( +g  `  R
) b )  e.  B )
16153expb 1195 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
1716adantlr 712 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
18 oveq2 6278 . . . . . . 7  |-  ( x  =  ( a ( +g  `  R ) b )  ->  ( X  .x.  x )  =  ( X  .x.  (
a ( +g  `  R
) b ) ) )
19 ovex 6298 . . . . . . 7  |-  ( X 
.x.  ( a ( +g  `  R ) b ) )  e. 
_V
2018, 8, 19fvmpt 5931 . . . . . 6  |-  ( ( a ( +g  `  R
) b )  e.  B  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( X  .x.  ( a ( +g  `  R ) b ) ) )
2117, 20syl 16 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( X  .x.  ( a ( +g  `  R ) b ) ) )
22 oveq2 6278 . . . . . . . 8  |-  ( x  =  a  ->  ( X  .x.  x )  =  ( X  .x.  a
) )
23 ovex 6298 . . . . . . . 8  |-  ( X 
.x.  a )  e. 
_V
2422, 8, 23fvmpt 5931 . . . . . . 7  |-  ( a  e.  B  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  a
)  =  ( X 
.x.  a ) )
25 oveq2 6278 . . . . . . . 8  |-  ( x  =  b  ->  ( X  .x.  x )  =  ( X  .x.  b
) )
26 ovex 6298 . . . . . . . 8  |-  ( X 
.x.  b )  e. 
_V
2725, 8, 26fvmpt 5931 . . . . . . 7  |-  ( b  e.  B  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  b
)  =  ( X 
.x.  b ) )
2824, 27oveqan12d 6289 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  =  ( ( X  .x.  a ) ( +g  `  R ) ( X 
.x.  b ) ) )
2928adantl 464 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
( x  e.  B  |->  ( X  .x.  x
) ) `  a
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) )  =  ( ( X 
.x.  a ) ( +g  `  R ) ( X  .x.  b
) ) )
3014, 21, 293eqtr4d 2505 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) ) )
3130ralrimivva 2875 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  A. a  e.  B  A. b  e.  B  ( (
x  e.  B  |->  ( X  .x.  x ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 b ) ) )
32 eqid 2454 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
334, 32srg0cl 17365 . . . . . 6  |-  ( R  e. SRing  ->  ( 0g `  R )  e.  B
)
3433adantr 463 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( 0g `  R )  e.  B )
35 oveq2 6278 . . . . . 6  |-  ( x  =  ( 0g `  R )  ->  ( X  .x.  x )  =  ( X  .x.  ( 0g `  R ) ) )
36 ovex 6298 . . . . . 6  |-  ( X 
.x.  ( 0g `  R ) )  e. 
_V
3735, 8, 36fvmpt 5931 . . . . 5  |-  ( ( 0g `  R )  e.  B  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( X  .x.  ( 0g `  R ) ) )
3834, 37syl 16 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( X  .x.  ( 0g `  R ) ) )
394, 5, 32srgrz 17372 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  ( 0g `  R ) )  =  ( 0g `  R
) )
4038, 39eqtrd 2495 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) `  ( 0g `  R ) )  =  ( 0g `  R ) )
419, 31, 403jca 1174 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( X  .x.  x
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) )
424, 4, 11, 11, 32, 32ismhm 16167 . 2  |-  ( ( x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R )  <->  ( ( R  e.  Mnd  /\  R  e.  Mnd )  /\  (
( x  e.  B  |->  ( X  .x.  x
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) ) )
433, 41, 42sylanbrc 662 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804    |-> cmpt 4497   -->wf 5566   ` cfv 5570  (class class class)co 6270   Basecbs 14716   +g cplusg 14784   .rcmulr 14785   0gc0g 14929   Mndcmnd 16118   MndHom cmhm 16163  SRingcsrg 17352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-plusg 14797  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-cmn 16999  df-mgp 17337  df-srg 17353
This theorem is referenced by:  sgsummulcl  17384
  Copyright terms: Public domain W3C validator