MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgi Structured version   Unicode version

Theorem srgi 17358
Description: Properties of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgi.b  |-  B  =  ( Base `  R
)
srgi.p  |-  .+  =  ( +g  `  R )
srgi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgi  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )

Proof of Theorem srgi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgi.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
2 eqid 2454 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 srgi.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  R )
4 srgi.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
5 eqid 2454 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
61, 2, 3, 4, 5issrg 17354 . . . . . . . . . 10  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  /\  ( ( ( 0g `  R ) 
.x.  x )  =  ( 0g `  R
)  /\  ( x  .x.  ( 0g `  R
) )  =  ( 0g `  R ) ) ) ) )
76simp3bi 1011 . . . . . . . . 9  |-  ( R  e. SRing  ->  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  /\  ( ( ( 0g `  R ) 
.x.  x )  =  ( 0g `  R
)  /\  ( x  .x.  ( 0g `  R
) )  =  ( 0g `  R ) ) ) )
87r19.21bi 2823 . . . . . . . 8  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  /\  ( ( ( 0g `  R ) 
.x.  x )  =  ( 0g `  R
)  /\  ( x  .x.  ( 0g `  R
) )  =  ( 0g `  R ) ) ) )
98simpld 457 . . . . . . 7  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
1093ad2antr1 1159 . . . . . 6  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
11 simpr2 1001 . . . . . 6  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  y  e.  B )
12 rsp 2820 . . . . . 6  |-  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( y  e.  B  ->  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
1310, 11, 12sylc 60 . . . . 5  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
14 simpr3 1002 . . . . 5  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  z  e.  B )
15 rsp 2820 . . . . 5  |-  ( A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( z  e.  B  ->  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
1613, 14, 15sylc 60 . . . 4  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
1716simpld 457 . . 3  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) ) )
1817caovdig 6462 . 2  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
1916simprd 461 . . 3  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) )
2019caovdirg 6465 . 2  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )
2118, 20jca 530 1  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   ` cfv 5570  (class class class)co 6270   Basecbs 14716   +g cplusg 14784   .rcmulr 14785   0gc0g 14929   Mndcmnd 16118  CMndccmn 16997  mulGrpcmgp 17336  SRingcsrg 17352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-nul 4568
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-iota 5534  df-fv 5578  df-ov 6273  df-srg 17353
This theorem is referenced by:  srgdi  17362  srgdir  17363
  Copyright terms: Public domain W3C validator