MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sranlm Structured version   Unicode version

Theorem sranlm 21319
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
sranlm.a  |-  A  =  ( (subringAlg  `  W ) `
 S )
Assertion
Ref Expression
sranlm  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. NrmMod )

Proof of Theorem sranlm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgngp 21297 . . . . 5  |-  ( W  e. NrmRing  ->  W  e. NrmGrp )
21adantr 465 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  W  e. NrmGrp )
3 eqidd 2458 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  W )
)
4 sranlm.a . . . . . . 7  |-  A  =  ( (subringAlg  `  W ) `
 S )
54a1i 11 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  =  ( (subringAlg  `  W ) `  S ) )
6 eqid 2457 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
76subrgss 17557 . . . . . . 7  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
87adantl 466 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  S  C_  ( Base `  W ) )
95, 8srabase 17951 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  A )
)
105, 8sraaddg 17952 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( +g  `  W )  =  ( +g  `  A ) )
1110oveqdr 6320 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
) )  ->  (
x ( +g  `  W
) y )  =  ( x ( +g  `  A ) y ) )
125, 8srads 17959 . . . . . 6  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( dist `  W )  =  (
dist `  A )
)
1312reseq1d 5282 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  =  ( ( dist `  A )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) )
145, 8sratopn 17958 . . . . 5  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( TopOpen `  W )  =  (
TopOpen `  A ) )
153, 9, 11, 13, 14ngppropd 21277 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( W  e. NrmGrp  <-> 
A  e. NrmGrp ) )
162, 15mpbid 210 . . 3  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. NrmGrp )
174sralmod 17960 . . . 4  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )
1817adantl 466 . . 3  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e.  LMod )
195, 8srasca 17954 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  =  (Scalar `  A ) )
20 eqid 2457 . . . . 5  |-  ( Ws  S )  =  ( Ws  S )
2120subrgnrg 21308 . . . 4  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  e. NrmRing )
2219, 21eqeltrrd 2546 . . 3  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  (Scalar `  A
)  e. NrmRing )
2316, 18, 223jca 1176 . 2  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( A  e. NrmGrp  /\  A  e.  LMod  /\  (Scalar `  A )  e. NrmRing ) )
24 eqid 2457 . . . . . . . 8  |-  ( norm `  W )  =  (
norm `  W )
25 eqid 2457 . . . . . . . 8  |-  (AbsVal `  W )  =  (AbsVal `  W )
2624, 25nrgabv 21296 . . . . . . 7  |-  ( W  e. NrmRing  ->  ( norm `  W
)  e.  (AbsVal `  W ) )
2726ad2antrr 725 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( norm `  W
)  e.  (AbsVal `  W ) )
288adantr 465 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  S  C_  ( Base `  W ) )
29 simprl 756 . . . . . . . 8  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  x  e.  (
Base `  (Scalar `  A
) ) )
3020subrgbas 17565 . . . . . . . . . . 11  |-  ( S  e.  (SubRing `  W
)  ->  S  =  ( Base `  ( Ws  S
) ) )
3130adantl 466 . . . . . . . . . 10  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  S  =  ( Base `  ( Ws  S
) ) )
3219fveq2d 5876 . . . . . . . . . 10  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  ( Ws  S ) )  =  ( Base `  (Scalar `  A ) ) )
3331, 32eqtrd 2498 . . . . . . . . 9  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  S  =  ( Base `  (Scalar `  A
) ) )
3433adantr 465 . . . . . . . 8  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  S  =  (
Base `  (Scalar `  A
) ) )
3529, 34eleqtrrd 2548 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  x  e.  S
)
3628, 35sseldd 3500 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  x  e.  (
Base `  W )
)
37 simprr 757 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  y  e.  (
Base `  A )
)
389adantr 465 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( Base `  W
)  =  ( Base `  A ) )
3937, 38eleqtrrd 2548 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  y  e.  (
Base `  W )
)
40 eqid 2457 . . . . . . 7  |-  ( .r
`  W )  =  ( .r `  W
)
4125, 6, 40abvmul 17605 . . . . . 6  |-  ( ( ( norm `  W
)  e.  (AbsVal `  W )  /\  x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( ( norm `  W ) `  ( x ( .r
`  W ) y ) )  =  ( ( ( norm `  W
) `  x )  x.  ( ( norm `  W
) `  y )
) )
4227, 36, 39, 41syl3anc 1228 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  (
x ( .r `  W ) y ) )  =  ( ( ( norm `  W
) `  x )  x.  ( ( norm `  W
) `  y )
) )
439, 10, 12nmpropd 21240 . . . . . . 7  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( norm `  W )  =  (
norm `  A )
)
4443adantr 465 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( norm `  W
)  =  ( norm `  A ) )
455, 8sravsca 17955 . . . . . . 7  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  ( .r `  W )  =  ( .s `  A ) )
4645oveqdr 6320 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( x ( .r `  W ) y )  =  ( x ( .s `  A ) y ) )
4744, 46fveq12d 5878 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  (
x ( .r `  W ) y ) )  =  ( (
norm `  A ) `  ( x ( .s
`  A ) y ) ) )
4842, 47eqtr3d 2500 . . . 4  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( (
norm `  W ) `  x )  x.  (
( norm `  W ) `  y ) )  =  ( ( norm `  A
) `  ( x
( .s `  A
) y ) ) )
49 subrgsubg 17562 . . . . . . . 8  |-  ( S  e.  (SubRing `  W
)  ->  S  e.  (SubGrp `  W ) )
5049ad2antlr 726 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  S  e.  (SubGrp `  W ) )
51 eqid 2457 . . . . . . . 8  |-  ( norm `  ( Ws  S ) )  =  ( norm `  ( Ws  S ) )
5220, 24, 51subgnm2 21274 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  W )  /\  x  e.  S )  ->  (
( norm `  ( Ws  S
) ) `  x
)  =  ( (
norm `  W ) `  x ) )
5350, 35, 52syl2anc 661 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  ( Ws  S ) ) `  x )  =  ( ( norm `  W
) `  x )
)
5419adantr 465 . . . . . . . 8  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( Ws  S )  =  (Scalar `  A
) )
5554fveq2d 5876 . . . . . . 7  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( norm `  ( Ws  S ) )  =  ( norm `  (Scalar `  A ) ) )
5655fveq1d 5874 . . . . . 6  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  ( Ws  S ) ) `  x )  =  ( ( norm `  (Scalar `  A ) ) `  x ) )
5753, 56eqtr3d 2500 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  x
)  =  ( (
norm `  (Scalar `  A
) ) `  x
) )
5844fveq1d 5874 . . . . 5  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  W ) `  y
)  =  ( (
norm `  A ) `  y ) )
5957, 58oveq12d 6314 . . . 4  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( (
norm `  W ) `  x )  x.  (
( norm `  W ) `  y ) )  =  ( ( ( norm `  (Scalar `  A )
) `  x )  x.  ( ( norm `  A
) `  y )
) )
6048, 59eqtr3d 2500 . . 3  |-  ( ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  /\  ( x  e.  ( Base `  (Scalar `  A ) )  /\  y  e.  ( Base `  A ) ) )  ->  ( ( norm `  A ) `  (
x ( .s `  A ) y ) )  =  ( ( ( norm `  (Scalar `  A ) ) `  x )  x.  (
( norm `  A ) `  y ) ) )
6160ralrimivva 2878 . 2  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A. x  e.  ( Base `  (Scalar `  A ) ) A. y  e.  ( Base `  A ) ( (
norm `  A ) `  ( x ( .s
`  A ) y ) )  =  ( ( ( norm `  (Scalar `  A ) ) `  x )  x.  (
( norm `  A ) `  y ) ) )
62 eqid 2457 . . 3  |-  ( Base `  A )  =  (
Base `  A )
63 eqid 2457 . . 3  |-  ( norm `  A )  =  (
norm `  A )
64 eqid 2457 . . 3  |-  ( .s
`  A )  =  ( .s `  A
)
65 eqid 2457 . . 3  |-  (Scalar `  A )  =  (Scalar `  A )
66 eqid 2457 . . 3  |-  ( Base `  (Scalar `  A )
)  =  ( Base `  (Scalar `  A )
)
67 eqid 2457 . . 3  |-  ( norm `  (Scalar `  A )
)  =  ( norm `  (Scalar `  A )
)
6862, 63, 64, 65, 66, 67isnlm 21310 . 2  |-  ( A  e. NrmMod 
<->  ( ( A  e. NrmGrp  /\  A  e.  LMod  /\  (Scalar `  A )  e. NrmRing )  /\  A. x  e.  ( Base `  (Scalar `  A ) ) A. y  e.  ( Base `  A ) ( (
norm `  A ) `  ( x ( .s
`  A ) y ) )  =  ( ( ( norm `  (Scalar `  A ) ) `  x )  x.  (
( norm `  A ) `  y ) ) ) )
6923, 61, 68sylanbrc 664 1  |-  ( ( W  e. NrmRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. NrmMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807    C_ wss 3471    X. cxp 5006   ` cfv 5594  (class class class)co 6296    x. cmul 9514   Basecbs 14644   ↾s cress 14645   +g cplusg 14712   .rcmulr 14713  Scalarcsca 14715   .scvsca 14716   distcds 14721  SubGrpcsubg 16322  SubRingcsubrg 17552  AbsValcabv 17592   LModclmod 17639  subringAlg csra 17941   normcnm 21223  NrmGrpcngp 21224  NrmRingcnrg 21226  NrmModcnlm 21227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ico 11560  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ds 14734  df-rest 14840  df-topn 14841  df-0g 14859  df-topgen 14861  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-grp 16184  df-minusg 16185  df-sbg 16186  df-subg 16325  df-mgp 17269  df-ur 17281  df-ring 17327  df-subrg 17554  df-abv 17593  df-lmod 17641  df-sra 17945  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-xms 20949  df-ms 20950  df-nm 21229  df-ngp 21230  df-nrg 21232  df-nlm 21233
This theorem is referenced by:  rlmnlm  21323  srabn  21926
  Copyright terms: Public domain W3C validator