MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqsqrd Unicode version

Theorem sqsqrd 12196
Description: Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
sqsqrd  |-  ( ph  ->  ( ( sqr `  A
) ^ 2 )  =  A )

Proof of Theorem sqsqrd
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 sqrth 12123 . 2  |-  ( A  e.  CC  ->  (
( sqr `  A
) ^ 2 )  =  A )
31, 2syl 16 1  |-  ( ph  ->  ( ( sqr `  A
) ^ 2 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   CCcc 8944   2c2 10005   ^cexp 11337   sqrcsqr 11993
This theorem is referenced by:  msqsqrd  12197  sqr00d  12198  zsqrelqelz  13105  nonsq  13106  prmreclem3  13241  nmsq  19110  ipcau2  19144  tchcphlem1  19145  tchcph  19147  minveclem3b  19282  efif1olem3  20399  efif1olem4  20400  cxpsqr  20547  loglesqr  20595  quad  20633  cubic  20642  quartlem4  20653  quart  20654  asinlem  20661  asinlem2  20662  efiatan2  20710  cosatan  20714  cosatanne0  20715  atans2  20724  chpub  20957  chtppilim  21122  rplogsumlem1  21131  dchrisum0flblem1  21155  dchrisum0flblem2  21156  dchrisum0fno1  21158  areacirclem2  26181  areacirclem6  26186  pell1234qrne0  26806  pell1234qrreccl  26807  pell1234qrmulcl  26808  pell14qrgt0  26812  pell14qrdich  26822  pell1qrgaplem  26826  pell14qrgapw  26829  pellqrex  26832  rmxyneg  26873  jm2.22  26956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996
  Copyright terms: Public domain W3C validator